
Building Adaptable and Reusable XML Applications with
Model Transformations

Ivan Kurtev
Software Engineering Group, University of Twente

P.O. Box 217, 7500 AE, Enschede, the Netherlands

kurtev@ewi.utwente.nl

Klaas van den Berg
Software Engineering Group, University of Twente

P.O. Box 217, 7500 AE, Enschede, the Netherlands

k.g.vandenberg@ewi.utwente.nl

ABSTRACT
We present an approach in which the semantics of an XML
language is defined by means of a transformation from an XML
document model (an XML schema) to an application specific
model. The application specific model implements the intended
behavior of documents written in the language. A transformation
is specified in a model transformation language used in the
Model Driven Architecture (MDA) approach for software
development. Our approach provides a better separation of three
concerns found in XML applications: syntax, syntax processing
logic and intended meaning of the syntax. It frees the developer
of low-level syntactical details and improves the adaptability and
reusability of XML applications. Declarative transformation rules
and the explicit application model provide a finer control over
the application parts affected by adaptations. Transformation
rules and the application model for an XML language may be
composed with the corresponding rules and application models
defined for other XML languages. In that way we achieve reuse
and composition of XML applications.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Frameworks. D.3.4 [Programming Languages]:
Processors – Interpreters. I.7.2 [Document and Text
Processing]: Document Preparation – Markup languages.

General Terms
Documentation, Design, Languages.

Keywords
XML, XML Processing, MDA, Transformation Language, Model
Transformations.

1. INTRODUCTION
Extensible Markup Language (XML) is nowadays a dominant
data representation format used in many areas in computer
science and industry such as World Wide Web (WWW),
eCommerce and Web Services Architecture. As a result many
XML markup languages emerged focusing on a particular
problem domain. This opens the possibility for reuse of existing
languages into new ones (known as hybrid languages) and
creating compound documents based on more than one

vocabulary. This trend is clearly exemplified by the recent
standards created within W3C based on composition and reuse of
modules defined for the popular Web languages such as
XHTML, SMIL, MathML, SVG.

The wide acceptance of XML motivates the need for techniques
and tools that support the development of XML-based
applications. Today, XML technology offers mature standards
and tools that mainly facilitate the definition and processing of
the syntactical part of XML applications. These are the XML
Schema for definition of markup language syntax, XSLT for
defining document transformations, XPath/XQuery for navigation
and extraction over documents, and a large set of high quality
XML parsers.

Apart from the traditional tasks of syntax definition and parsing,
an XML application requires processing that reflects the
semantics of the markup used in the documents. Since the
semantics is specific to the application it is much more difficult
to standardize the application-specific processing phase in
contrast with the syntax parsing phase. The application usually
has to transform XML documents into application-specific
structures that implement the concepts in the domain for which
XML is used. That is a recurring task and is a candidate for at
least a partial automation. Furthermore, today’s applications
must satisfy certain quality properties. The first property we
consider is the adaptability of the application that allows it to be
easily adapted at low cost when the syntax of the markup
language changes. The second property is the reusability of the
processing application. This is motivated by the need of
compound documents based on multiple vocabularies. The ability
to reuse the vocabulary is naturally followed by the need to reuse
processing logic for that vocabulary. One possible reuse is in the
composition of several XML applications in a new one. In that
respect reusability is a prerequisite for the composability of the
applications.

Generally, the programmer may choose between two technologies
to process XML documents with a programming language:
generic document interfaces (such as DOM and SAX), and data
binding. Simple API for XML (SAX) [24] and Document Object
Model (DOM) [26] provide interfaces to documents that reflect
the document syntax. It is acknowledged that this approach is too
low level and error-prone. Moreover, the application is often
designed in an ad-hoc manner and hardly possesses the
adaptability and reusability properties. For instance, a change in
the syntax may lead to many changes in the code and
recompilation of the whole application.

In data binding [23] a document schema is compiled into a set of
classes in a given language and the processing of documents is

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

160

automated (a process known as unmarshaling). This approach,
however, is not applicable if the application classes already exist
and differ significantly from the document syntax structure.
Reusability and adaptability are deteriorated because every
change in the schema requires schema recompilation.

The problems of adaptability and reusability caused by the need
for redesign and recompilation of applications are strongly
related to the fact that the XML technology does not provide a
standard means for specifying semantics of markup languages. In
current XML applications the relation between syntax and its
intended meaning is not explicit. It is often hard-coded in the
application and it is difficult to reuse and maintain it. On the
other hand, the domain of programming language specification
offers a number of frameworks for defining language semantics
in an explicit way [30]. Issues like the evolution and composition
of languages and their translators have been on the research
agenda for a long time [12][13][3]. Clearly, the experience
gained in that area can be used to develop tools and techniques
required for XML applications.

In this paper we propose an approach for XML processing based
on a declarative specification and execution of a model
transformation from the language syntax structures (the source
model) to the application structures (the target model). That
transformation can be regarded as a semantic specification for the
markup language syntax. We assume that the document syntax is
either defined in an XML schema or as a set of elements and
attributes (schema-less approach). If a schema is present it is
treated as a model of XML documents. The application classes
form the target model. A given transformation contains
declarative rules that encode how the syntax constructs defined
in the source schema represent components in the target model.
Transformations are specified in a domain-specific model
transformation language. We present a language that has been
developed for another problem domain in software engineering:
the OMG’s Model Driven Architecture (MDA) [17] approach
and show how the language is applied in the context of XML
processing.

By using transformations we achieve a better separation of
concerns. XML applications are decomposed in three
components: syntax definition (schema), transformation
specification and application classes. Application classes do not
contain syntax processing code; this is captured in the
transformation specification.

The benefits of our approach are the following:

• developers are freed from writing a low level syntax
processing code;

• it opens a possibility for automatic generation of language
translators similar to the compiler-compiler approach;

• syntax and application code may evolve independently;

• transformation rules can be designed at the granularity that
provides good adaptability of the application. Only rules that
reflect changes in the syntax are updated;

• reusability of the applications is improved. Using multiple
vocabularies in a document is achieved by composing
corresponding transformation rules and application classes.

This paper is organized as follows. Section 2 gives a detailed
overview of the approach. Section 3 presents an example used
further in Section 4 to present the features of our transformation
language. Section 5 discusses related work. Section 6 gives
conclusions and directions for future work.

2. OVERVIEW OF THE APPROACH
Our approach is based on specification and execution of
transformations between models. We borrow this technique from
the Model Driven Architecture (MDA) approach for software
development. The application of model transformations to XML
processing shown here is an elaboration of our previous work
reported in [9].

In an MDA-based process the development of a software system
starts with making a detailed model of it. That model is a
system’s specification at an abstract level that does not contain
information about the technologies that will be used for the
system implementation (so called Platform Independent Model,
PIM). When the implementation technologies are chosen the PIM
is (semi) automatically transformed to a model that contains
implementation information known as Platform Specific Model
(PSM). The PSM has to contain enough information to allow
automatic code generation of the system. As we can see
transformations between models is the main operation in an
MDA-based process. Recent activities in the area are focused on
development of domain-specific transformation languages and
supporting tools [18].

In our approach to XML processing we benefit from the ability to
express and execute transformations for specifying, in a
declarative and explicit way, the actions that an application takes
during the processing of XML documents. We use a
transformation language developed in the context of an MDA
process [10].

Fig. 1 shows the basic model transformation pattern in MDA.

Figure 1. The basic model transformation pattern

In this pattern a transformation is executed by the transformation
engine taking model A as a source and producing model B as a
target. A transformation specification is written in a
transformation language. In MDA, models are conforming to (or
are instances of) meta-models that define the rules of the
modeling languages used to create the models. An example of a
modeling language is Unified Modeling Language (UML) [19]. A
transformation specification is based on the knowledge of the
meta-models (in Fig. 1 meta-model A and meta-model B). A

161

transformation can be executed on every input model that
conforms to the meta-model A.

To apply this approach to XML processing we adapt the pattern
in that context (see Fig. 2). The transformation engine takes an
XML document as input and generates an output. This output can
be a set of rows in a relational database, another XML document
or objects instances of classes written in a given programming
language (e.g. Java). In this paper we focus on applications that
instantiate objects on the base of XML documents. These objects
may be implemented in any programming language. Our
transformation language is independent of concrete languages
used to specify the models. We chose Java to illustrate our
approach. To apply the approach we must identify the meta-
models that will be used to specify the transformation. Fig. 2
shows the transformational pattern applied in the context of
XML processing.

First we have to identify the model of XML documents.
Available alternatives are the Document Object Model (DOM)
and the XML Information Set. Both reflect the XML grammar
that is used to check if an XML document is well-formed. In this
paper we choose DOM as a more popular standard among the
developers but any other model that reflects the notion of well-
formedness may be used. Furthermore, XML documents may
conform to a schema. Most of the today’s XML languages are
defined by an XML schema. The schema can be perceived as a
model of the class of documents that are valid against that
schema.

Figure 2. Transformation pattern for XML processing

We assume that the schema may be available and the processing
may use the schema constructs. Moreover, the presence of
schema does not inhibit the conformance to the generic XML
document model. It only imposes additional constraints.
Therefore the documents may be considered as instances of two
different models: the generic document model and the document
schema. The instanceOf relationships are defined in different
ways in these cases and may exist together. Working with both
models is important and should be available in the
transformations. A software engineer should be able to specify
both generic document processing reflecting DOM and document
processing that uses type information based on schema types. To
employ schemas in our approach we include a model of XML
Schema that can be derived from the specification. In that way
the source meta-model (meta-model A in Fig. 1) is split into two
separate models in the case of XML processing: the XML
Schema Model and the XML Document Model. The
transformation specification may use both the schema and the
generic document types. The XML Document Model is defined

in UML and shown in Fig. 3. The XML Schema Model is
referred to [27].

Figure 3. The XML document model

A concrete schema and a concrete XML document are used as a
source of the transformation but only the document is
transformed. The schema is used only for purposes of selection of
concrete document nodes on the base of their types and
associated element or attribute declarations. This is done by
using a Post Schema Validation Infoset (PSVI).

The target meta-model in the pattern in Fig. 2 consists of the
application-specific classes. The output model (corresponding to
model B in Fig.1) is therefore a set of objects instances of the
application classes.

The structure of an XML application based on model
transformations is shown in Fig. 4. The static part of the
application consists of the components surrounded by the gray
area. In this part the optional XML schema, the transformation
specification and the classes are the application specific
components. Application classes implement the intended
meaning of the markup syntax constructs and the transformation
specification specifies how the syntax is related to that meaning.
Application classes do not contain syntax processing
functionality. This functionality is captured in the transformation
specification.

The dynamic part of the application contains the components
surrounded by the white rectangle in the lower right corner of
Fig.4.

Figure 4. Static and runtime part of an XML application

The objects are part of the dynamic state of the XML application
and are instantiated at runtime after the execution of the
transformation.

162

3. RUNNING EXAMPLE
We will illustrate our approach on the base of an example
presented in this section. Then in Section 4, we show the
transformation specification for the example and explains the
transformation language constructs.

The example uses a simplified version of the SMIL timing
synchronization module [28] intended to be used together with
other markup languages such as XHTML. A set of application
classes written in Java is used to implement the behavior of the
time dependency graph nodes according to the time model of
SMIL. The structure of the example is shown in Fig. 5. It is an
instance of the general pattern for XML processing in Fig. 2.

Figure 5. Structure of the example application

It should be noted that the SMIL timing model is rather complex
and includes many capabilities. It is beyond the scope of the
paper to provide a detailed description of that model and the way
to design a time scheduler program that executes the model. We
limit ourselves to a very simplified subset of the timing module
that uses a set of attributes indicating the type of the time
element (interval, parallel or sequence) and the start, end and
duration properties. Our source schema therefore contains four
attributes taken from the SMIL specification. The following
schema snippet shows the attribute definitions.
<attribute name=’begin’ type=’string’/>

<attribute name=’end’ type=’string’/>

<attribute name=’dur’ type=’string’/>

<attribute name=’timeContainer’ type=’string’/>

The attribute timeContainer may assume 3 values: none, par and
seq. The first value none indicates that an element that has an
attribute with value none is an atomic timed element (interval).
The two values par and seq determine the element as a time
container with a parallel and sequential scheduling of its
children.

The processing of an XML document that uses these attributes
results in creation of a time dependency graph that captures the
timing constraints and dependencies expressed in the document.
The nodes of that graph reflect the semantics of interval and
container nodes and implement their functionality. Time graph
nodes are instances of application classes written in Java. A
sketch of the classes is given below. We focus on building the
time dependency graph, and do not include an implementation of
the timing functionality.

public interface ControlledObject {

 public void activate();

 public void deactivate();

}

public abstract class TimedElement{

 public int begin;

 public int end;

 public int dur;

 public ControlledObject ctrlObject;

 public void abstract start();

 public void abstract stop();

}

public class Interval extends TimedElement{

 public void start() {//concrete implementation}

 public void stop() {//concrete implementation}

}

public abstract class TimeContainer extends TimedElement{

 public Vector components;

}

public class Parallel extends TimeContainer{

 public void start() {//concrete implementation}

 public void stop() {//concrete implementation}

}

public class Sequence extends TimeContainer{

 public void start() {//concrete implementation}

 public void stop() {//concrete implementation}

}

Class TimedElement is the abstract root class of the application
hierarchy. Every node in the time graph is an indirect instance of
that class. It has fields for the begin, end and the duration of the
timed element. A node in the graph manipulates the behavior of
an object. That object could be a text, picture, an audio clip or
any other element. Timed objects must implement the interface
ControlledObject. At the time of activation/deactivation of a
node it invokes the operations activate()/deactivate() on the
controlled object.

We have three types of time nodes: Interval, Parallel and
Sequence. The latter two are time operators that specialize the
abstract class TimeContainer. Time containers have other nodes
as children and impose a sequential or parallel order on their
activation. Time containers may be nested. The execution
semantics of the time graph is described in the SMIL
specification [28].

4. TRANSFORMATION LANGUAGE
The transformation language presented here is developed
according to the requirements formulated in the
Query/Views/Transformations Request for Proposals by OMG
[18]. According to this OMG document transformations describe
relationships between a source meta-model and a target meta-
model in a declarative way. Another requirement is for
mechanisms that support reusability and extensibility of
transformation definitions. We shall see in Section 4.5 that this
requirement is essential in achieving the adaptability and
reusability of XML applications.

4.1 Transformation Specification
The transformation language is used for the specification of
transformations. The following code is the transformation
specification for processing XML documents that use the timing
attributes in the example to impose timing constraints upon other
objects. After the execution of this transformation an XML
application will build a time graph that captures the timing
constraints specified in the document. It does not process the

163

concrete controlled objects which are described by another
markup language. An example of such a markup language that
uses timing constraints is given in section 4.5.

The transformation is explained throughout this section in
combination with an explanation of the transformation language
constructs. Language keywords are given in bold. A more
detailed description of the language can be found in [10].

1. timedElementMapping abstract ModelElementRule {

2. source[e:Element link-to(node),
3. condition{XPath($e[@timeContainer])}]

4. target [node: TimedElement{begin, end, dur, ctrlObject}]

5. SlotRules{

6. beginValue

7. source[beg:Attribute=XPath($e/@begin)]

8. target [begin=toInt(beg.value)]

9. endValue

10. source[end:Attribute=XPath($e/@end)]

11. target [end=toInt(end.value)]

12. durValue

13. source[duration:Attribute=XPath($e/@dur)]

14. target [dur=toInt(duration.value)]

15. }

16. }

17. parallelContainer ModelElementRule inherits

18. timedElementMapping{

19. source[condition{XPath($e[@timeContainer=’par’])}]

20. target[node: Parallel{components}]

21. SlotRules{

22. componentsValue

23. source[timedChild:Element=XPath($e/*[@timeContainer])]

24. target[components=target(timedChild, node)]

25. }

26. }

27. intervalNode ModelElementRule inherits

28. timedElementMapping{

29. source[condition{XPath($e[@timeContainer=’none’])}]

30. target[node: Interval]

31. }

4.2 Language Overview
A transformation specification is written in the transformation
language being described here and is based on the meta-models
of the source model and the target model. In the case of XML
processing the source and target models and their meta-models
are shown in Fig. 2.

A transformation specification is a set of rules. There are two
types of rules: model element rules and slot rules. Model element
rules select elements in the source model and execute actions.
Actions are creation of elements in the target model, update of
existing elements and deletion of elements. In our approach the
model elements in the source model are XML document nodes
and the model elements in the target model are Java objects. Slot
rules are used to relate the elements by setting their slot values.
For Java objects slots are defined by the class fields. For XML
nodes slots are defined by the attributes and association roles in
the XML Document Model in Fig. 3. Both types of rules have
rule source that selects elements in the source model.

Our example transformation consists of 3 model element rules
which in turn have associated slot rules.

4.3 Language Constructs
4.3.1 Model Element Rules
Model element rules create new elements in the target model or
modify existing ones in the source and the target models. The
creation of new elements is done by instantiating the types in the
target meta-model, in our example these are the Java classes.

The syntax of model element rules is specified below in a pseudo
EBNF notation. Non-terminals are in italic.

ruleName ModelElementRule InputParameters? {

 RuleSource

 target [Action +]

 SlotRule*

}

Every model element rule has a name, a source, a target, an
optional list of input parameters and is associated with a number
of slot rules. Model element rules specify a correspondence
between elements enumerated in the rule source and elements in
the rule target. When a rule is executed elements in the rule
target are instantiated for every tuple that matches the rule
source. Model element rules may be defined as abstract. If a rule
is abstract it cannot be executed directly. It can be inherited by
other rules and provides its components for reuse.

Rule source specifies the characteristics of the elements in the
source model that will be selected by a transformation rule. Rule
source is an expression that is evaluated to a set of tuples
containing elements in the source model.

A rule source enumerates at least one component. An optional
condition may be imposed on the components. The components
of a rule source are two kinds: a model element identifier that
uniquely identifies an element in the source model and variable
that can be bound to more than one source element. Each
variable has a type. The type is a model element from the source
meta-model. The variable matches the instances of this type in
the source model. Variables can be initialized by an expression
written in Object Constraints Language (OCL). For the purposes
of XML processing we allow the usage of XPath expressions.
The condition of a rule source is a Boolean expression. The
result of the evaluation of a rule source is a set of tuples formed
by the Cartesian product of the matches for each component.
Tuples that do not satisfy the condition of the rule source are
excluded.

Consider the first model element rule named
timedElementMapping (lines 1-16). The source contains one
component, which is a variable of type Element with an imposed
condition. The evaluation of the rule source will produce a set of
element nodes in the source document that satisfy the condition,
that is, all the XML elements that have an attribute
timeContainer no matter what the attribute value is. Note that the
condition is written in XPath and refers to the variable e by using
the notation $e (line 3). In that way we select all the elements on
which some time constraints are imposed.

The target of a model element rule contains a set of actions. Two
types of actions are supported: instantiation and update. Only
instantiation action will be explained here. An instantiation
specifies a type in the target meta-model that will be instantiated.
The element created by an instantiation might be assigned with

164

an identifier. Instantiations enumerate the names of the slots that
will be assigned with value after the instantiation. Slot values are
determined from an optional expression specified in the slot list
and an optional set of slot rules.

The rule timedElementMapping contains one instantiation action
based on class TimedElement and is assigned with the identifier
node (line 4). Since this is an abstract class the rule cannot be
executed and is declared as abstract. The instantiation
enumerates the slots that must be assigned with values: begin,
end, dur and ctrlObject.

The transformation language supports single inheritance among
model element rules. The inheriting (or child) rule inherits from
the inherited (or parent) rule its source, target and the associated
slot rules. Inheriting rule may define its own source, target and
slot rules and may override the corresponding inherited
components.

Rules parallelContainer (lines 17-26) and intervalNode (lines
27-31) inherit the rule timedElementMapping. They specify the
classes that will be instantiated for the parallel time operator and
interval node by overriding the instantiation labeled node in the
parent rule. The identifier is preserved, however, the classes are
changed (lines 20 and 30). New classes are concrete and may be
instantiated. Slot rules for obtaining the values of slots begin,
end and dur are inherited. In this example rule inheritance
follows the inheritance in the target meta-model. It allows
reusing of the logic for calculating slot values defined in the
super class. The rule for processing of sequential time operator is
skipped. It is similar to the rule for the parallel operator.

Inheriting rules also inherit the source element and add new
conditions. The conditions specified in the inheriting rules are
logically and-ed to the inherited condition. Therefore rule
parallelContainer will be applied on all elements that have
attribute timeContainer with value ‘par’ (see the condition in
line 19) and rule intervalNode will be applied on elements with
attribute value ‘none’ (condition in line 29).

4.3.2 Slot Rules
Slot rules are always associated to a model element rule and
specify how to obtain the values of the slots of its instantiations.
The syntax of the slot rules is given below:

ruleName RuleSource target[(slotName=Expression)+]

Every slot rule has a name, a source and a target. Rule target
enumerates the slots to be set up with a value. Rule source
specifies the elements in the source model that will be used to
obtain the value of the slots. A given slot may have more than
one slot rule for the calculation of the value. Expressions in the
rule source may refer to variables defined in the source of the
owner model element rule. In many cases the source of a slot rule
is determined relatively to the source of its owner model element
rule. For example, the value of the slot begin is determined by
the rule beginValue (lines 6-8). The source of the rule specifies
that the value must be taken from an attribute that is located by
the XPath expression $e/@begin where e is the component in the
owner model element rule.

To determine the value of a slot the transformation engine first
evaluates the expression assigned to the slot in the instantiation.
If there is no expression then the value is obtained by executing
the associated slot rules. For every match of the source of a slot
rule the expression assigned to the slot is evaluated. Results

obtained from the matches are united in a set. The sets obtained
from the slot rules are united and the result is used as value of
the slot. Multiplicity and type constraints are checked.

It should be noted that our example transformation is not
complete since there is no slot rule for the slot ctrlObject. The
reason is that it is not known in advance what the controlled
object is and how it is located. This is determined when the
timing module is used together with another module to form a
full language. Only in that case the information about the
controlled object is available. Therefore, a new slot rule should
be added based on the specific composition between the timing
module and the other module. This is explained in section 4.5
where our example is completed.

4.3.3 Linking Source and Target Elements
Whenever a model element rule is executed the execution engine
establishes an association link between the elements matched by
the source and the elements instantiated by the target of the rule.

The created target model elements may be located via this
association and used as slot values of other model elements
created by other rules. They are accessed by querying the source
element for the associated elements in the target model. The
linking is done by the link-to construct that instructs the
transformation engine to establish a link between an element of
the source and the instantiations in the target of the rule. An
example usage of this construct is shown in line 2 where the
timed element is associated to the time graph node created for it.
This association is used in rule parallelContainer to obtain the
children nodes of the container. This is done by the slot rule
componentsValue (line 22-24) where for every child XML
element with imposed timing constraints the corresponding time
graph node is located by using the built-in function target (line
24). This function has two arguments. The first is the variable
that holds the source node (in our example timedChild) and the
second is the identifier of the element in the target model (node).
The element in the target model may be created by any rule. The
important point here is the usage of the same identifier across the
rules.

4.4 Transformation Execution
Generally, there are two ways in the transformation engine to
execute transformations: by interpretation and by compilation.
Currently, rules are executed by interpretation and a prototype of
an interpreter has been developed.

Rules are declarative and there is no predefined execution order
among them. A single source element may be processed by many
rules. The execution of a model element rule is a sequence of
instantiations of its target classes. The main problem here is the
dependency among the instantiations introduced by the fact that
an object may require another object as a slot value. In case of a
constructor of a Java class that requires parameters the values of
the parameters must be available before the class instantiation.
Again, this leads to a dependency among instantiations.
Instantiations and their dependencies form a graph. An execution
order is derived after a topological sort over the graph. A
transformation is executable if the graph does not contain cycles.

4.5 Composing Transformations
In this section we show how our approach supports reuse of XML
applications in the context of processing of compound

165

documents. For this purpose we introduce another simple XML
language that will be composed with the timing constructs in our
previous example. For this new language we specify a second
transformation that will be composed with the first one to form a
new transformation capable of processing compound documents
that use markup from both languages.

4.5.1 Our Second Example Language
The second language contains primitive elements that encode
widgets and container elements that organize the widgets
horizontally and vertically. We have two simple widgets for
labels and images and two containers. The element names are
label, image, hbox, and vbox respectively. For simplicity we skip
the details about the size, font and color of the elements. A
document written in that widget language is visualized by
building and showing a hierarchy of layout objects following the
nesting hierarchy of the document. Layout objects are again
instances of Java classes. The following code gives a sketch of
the application class hierarchy.
public abstract class LayoutElement {

 public boolean visible;

 public boolean displayed;

 public abstract void draw();

 public abstract void refresh();

}

public abstract class Container extends LayoutElement{

 public Vector components;

}

public class Label extends LayoutElement{

 public String labelText;

 public void draw() {//implementation}

}

public class Image extends LayoutElement{

 public String imageFile;

 public void draw() {//implementation}

}

public class HBox extends Container{

 public void draw() {//implementation}

}

public class VBox extends Container{

 public void draw() {//implementation}

}

4.5.2 The Transformation Specification
The transformation specification used to transform documents
into a hierarchy of layout widget objects is given below. Some
slot rules are omitted to safe space.

labelRule ModelElementRule {

 source [e: Element link-to(widget),

 condition{e.name=’label’}]

 target [widget: Label{labelText}]

}

imageRule ModelElementRule{

 source [e:Element link-to(widget),

 condition{e.name=’image’}]

 target [widget: Image{imageFile}]

}

containerRule abstract ModelElementRule {

 source [e: Element link-to(widget)]

 target [widget: Container{components}]

 SlotRules{

 componentsRule

 source[child:Element=XPath($e/*)]

 target[components=target(child, widget)]

 }

}

hBoxRule ModelElementRule inherits containerRule{

 source[condition{e.name=’hbox’}]

 target[widget: HBox]

}

vBoxRule ModelElementRule inherits containerRule{

 source[condition{e.name=’vbox’}]

 target[widget: VBox]

}

4.5.3 Composing Languages
The structure of the application that processes documents with
time constrained widgets is shown in Fig. 6. The schema of the
hybrid language contains constructs in the timing module and the
widget language. Transformation specification is a composition
of the transformations for the two languages. The application
model is a composition of the widget classes and time
dependency graph classes.

Figure 6. Composition of timing and widget markup
languages and their processors

The required step for integration of the two markup languages is
to establish an interpretation of the activation and deactivation
events in terms of the hosting language. Following the ideas of
XHTML+SMIL [29] we choose two possible interpretations of
activation. The first one affects the visibility of an element and
the second one affects the display of an element. Making an
element invisible means that it is not shown on the screen but
generates a layout element and still affects the layout of other
elements. Turning of the display property means that the element
is not shown and no layout element is created for it. This
interpretation is specific for the composition of the two languages
and needs an explicit indication. Therefore a new attribute will
be introduced to indicate the exact time action. Similarly to
XHTML+SMIL the attribute name is timeAction with two
possible values: visibility and display.

The next step is to integrate the two applications in order to
obtain a processor for compound documents. This requires
composition of the transformations and the application classes.
We first discuss the integration of the application classes.

4.5.4 Composing Application Classes
Every node in the time dependency graph must hold a reference
to the object it controls. After the integration of the languages it
is known what the controlled objects are. Controlled objects must
implement the ControlledObject interface, however, class
LayoutElement does not. Therefore we have a type compatibility
problem. To overcome the problem and to perform the required
composition between the classes we turn to the Adapter design
pattern [6]. We introduce a new Java class that implements

166

ControlledObject interface and holds a reference to the actual
layout element being controlled. The invocations of activate and
deactivate methods are transformed to changing the visible and
displayed properties of the layout objects. Since there are two
possible interpretations of activation/deactivation we create one
adapter class per interpretation:
public class ChangeVisibility implements ControlledObject{

 public LayoutElement obj;

 public void activate(){

 obj.visible=true;

 obj.refresh();

 }

 public void deactivate(){

 obj.visible=false;

 obj.refresh();

 }

}

The second class ChangeDisplay is implemented in a similar
way.

4.5.5 Composing Transformations
Now we can turn to the composition of the transformations. All
the rules are reused and new rules must be added to instantiate
the glue classes shown above. Two model element rules are
added for that purpose and one slot rule that determines the value
of the slot ctrlObject. Rules are shown below.
visibilityRule ModelElementRule{

 source[e:Element link-to(adapter),

 condition{XPath($e[@timeAction=’visibility’])}]

 target[adapter:ChangeVisibility{obj=target(e, widget)}]

}

displayRule ModelElementRule{

 source[e:Element link-to(adapter),

 condition{XPath($e[@timeAction=’display’])}]

 target[adapter: ChangeDisplay {obj=target(e, widget)}]

}

ctrlObjectValue SlotRule owner=timedElementMapping {

 target[ctrlObject=target(e, adapter)]

}

The slot rule is associated to the timedElementMapping rule from
the first transformation. Apart from the simple additions of rules
the transformation language also allows overriding of existing
rules.

5. RELATED WORK
Explicit specification of the XML semantics can be done in one
of the formalisms used in the area of programming language
specification. A number of papers adapt techniques for
specification of computer language semantics in the context of
XML as a syntactical framework. In [21] the semantics of an
XML language is given in the form of an attribute grammar [8].
This opens the possibility for applying the results and tools of
extensive research available in that area. In attribute grammars
translation is performed over attributed trees. The difference
with our approach is that in our approach translation is
performed as a transformation from a document tree to a graph.

RelaxNGCC [15] is based on compiler-compiler techniques to
build a processor for a language conforming to a RelaxNG
schema. This provides more flexibility in bridging between the
application model and document syntax and in associating

behavior with XML documents. It allows reuse of already
existing classes and deals better with structural differences
between the syntax and classes. In addition, it generates a
dedicated parser for a given XML language. Our transformation
rules can be seen as similar schema annotations for W3C
schemas and for schema-less documents. The approach for
modular and extensible processors presented in [25] is inspired
by denotational semantics of computer languages. Processors
operate on document trees and do not rely on a schema. Our
approach permits both types of processing: document-based and
schema based.

Another dimension of the work presented in the paper is the
explicit specification of the relation between the syntax and
another type of structure (a model, a database, an ontology). The
approach presented in [1] maps XML documents to domain
ontologies. Mapping rules rely on XPath. The primary goal of
mapping is to allow translation of queries over the ontology to
queries over the source documents. In our work the rules are used
to transform source documents into a set of objects. Other papers
that discuss the problem of bridging between XML syntax and
ontology are [16] where a mapping ontology is presented that
transforms XML documents to their RDF representation and [20]
where the authors suggest a unification approach for XML and
RDF based on model-theoretic semantics. In [2] a framework for
expressing the semantics of markup is defined. The semantics of
markup is a set of inferences that can be drawn from the
document. PROLOG is used as an implementation language for
inference rules. In the context of this work our transformation
rules are particular types of inference rules. However, we rely on
a domain-specific language for transformation specification and
aim at a closer integration with object-oriented programming
languages.

There exist a number of languages dedicated to XML processing:
XSLT, XDuce [7], XL [5]. All of them transform XML
documents to other XML documents and their type system is
based on XML types. Our approach is focused on transformation
to application objects and uses types from a programming
language, in our case Java.

The problem of reuse of language processors and building new
languages by composing existing modules has been addressed in
research of programming language development and the problem
proved to be hard. Existing work studies the composability
properties of frameworks for semantics specification: attribute
grammars [3], denotational semantics, operational and action
semantics [13][12]. These techniques rely on mathematical
formalisms to specify the semantics. Transformation rules in our
approach may be perceived as specification of the language
semantics in a domain-specific transformation language that has
features closer to programming languages. In this respect it is
more familiar to software developers than the enumerated formal
techniques.

There are tools supporting XML processing in browsers.
XSmiles [22] is a browser that supports some of the today’s
popular web languages. Mozilla browser [14] provides a
framework for client-side web applications relying on a set of
XML languages. Both tools provide an extensible architecture for
XML applications. In contrast, our approach does not define an
architecture nor a tool but stresses on the explicit specification of
the language semantics that can be further employed in a tool.
XVM [11] is an extensible architecture for XML processing

167

based on an association between XML elements and software
components that implement their behavior. Our approach allows
similar association of processing logic to more complex
structures in the document (e.g. a tuple of elements and
attributes). In XVM many aspects of the processing may remain
hard-coded in the components while our approach declares this
explicitly.

6. CONCLUSION AND FUTURE WORK
We presented an approach for development of XML applications
based on specification of model transformations from a document
model (or document schema) to a set of application-specific
classes. In our approach transformations are specified in a model
transformation language developed in the context of MDA.

The approach frees the software engineer from writing low level
and error-prone code against the generic syntax document model
such as DOM and SAX. Instead, a declarative transformation
specification is written that establishes the relations between
syntax constructs and application structures. Transformation
specification has an operational semantics and is executed by an
interpreter. We plan to apply a compilation on transformation
specifications to produce a dedicated XML processor for a given
language. This is inspired by the compiler-compiler approach
mentioned in the paper. Transformation rules are considered as
semantic annotations.

The main purpose of the approach is to improve adaptability and
reusability properties of XML applications. The strength of the
approach is that it makes processing logic of the application
explicit by expressing it in a set of rules that can be manipulated.
However, we observe also problems in achieving these
properties.

Adaptability is required to respond to changes in the application
in an easy and cheap way without a redesign and recompilation
of the whole application. Changes may occur in the language
syntax, in the transformation specification and in the application
classes. These three aspects are clearly separated from each other
and may evolve independently. The most difficult case is the
change of the syntax since it usually brings changes in the
transformation specification and in the application classes. In our
approach the required changes can be isolated in specific rule(s)
and classes. The adaptability in that case is derived from the
finer control over the application components. Additive
adaptations seem to be easier for handling. This type of
adaptation usually requires additions of new rules and classes
that must be integrated with their counterparts. Deletions and
replacement of components may be more difficult since this will
require replacement of classes and refactoring of the
transformation rules. However, these changes are still isolated
and may be done without recompilation and redeployment of the
whole application.

Another quality property being pursuit is the reusability of XML
applications motivated by the need of hybrid languages and
compound documents. Usually an application is reused and
composed together with other applications. In that case there are
two distinct problems: the composition of transformation rules
and the composition of application classes. They are driven by
the composition of the XML languages. Composition of
transformations is achieved by the available operators in the
transformation language. It provides inheritance among rules,

additions of both model element and slot rules and modules for
reusing a set of rules. Rules may also be overridden. Every
language, however, has limitations with respect to the available
composition operators. Transformation technology provides us
with a solution for composition operators non-supported by the
transformation language: transformations may be considered as
models and may be manipulated by another transformation. We
investigate the required compositional operators for a
transformation language and methods for introduction of new
operators if required.

The second problem related to the composition of XML
applications is the composition of the application classes which
is a case of software composition. In general, this is a problem
that proved to be difficult. In our example it was easily solved by
using the Adaptor design pattern. This is possible if the
composition is anticipated and the application is properly
designed. In most cases, however, the composition is not
anticipated and the application classes are not composable.
Composition may be done on source code and on already
compiled classes. We can benefit from research in the area of
aspect-oriented software development that provides advanced
software composition techniques beyond the aggregation and
inheritance [4]. This is the main direction for future research.

One problem that remains open is the scalability of the approach.
It works on examples that are relatively simple but it is not clear
what happens in complex cases with larger number of languages
involved. A possible approach is to start with a small stable set
of languages and to create modular processors for them that can
be composed with each other. This could be the domain of the
Web languages. The composition of markup languages is
complicated further by the requirement that software engineers
should know the details of the language semantics which is not
always simple.

In this paper we focused on the possibility to utilize
transformations for the specification of XML language semantics.
We plan to go further by developing a tool that supports the tasks
not discussed here such as deploying, updating and composing
transformations and classes in a browser-like environment. This
is similar to the architectures that XSmiles and Mozilla provide.

We believe that another benefit of our approach may come from
the increasing popularity of MDA and model transformations and
the standard set of languages and tools that are expected.

7. REFERENCES
[1] Amann, B., Beeri, C., Fundulaki, I., Scholl, M. Querying

XML Sources Using an Ontology-Based Mediator. In
proceedings of CoopIS/DOA/ODBASE, 2002

[2] Dubin, D. Object mapping for markup semantics. In B. T
Usdin, editor, Proceedings of Extreme Markup Languages
2003, Montreal, Quebec, August 2003

[3] Farrow, R., Marlowe, T.J., and Yellin, D.M., Composable
attribute grammars: support for modularity in translator
design and implementation. 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
Albuquerque, US. 1992

[4] Filman, R., Elrad, T., Clarke, S., and Aksit, M. Aspect-
Oriented Software Development. Addison-Wesley. 2004

168

[5] Florescu, D., Grunhagen, A., and Kossmann, D. XL: an
XML programming language for web service specification
and composition. 11th international conference on WWW,
Honolulu, Hawaii, USA, 2002

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley. 1995

[7] Hosoya, H., Pierce, B. XDuce: A typed XML processing
language. In Third International Workshop on the Web and
Databases (WebDB2000), volume 1997 of Lecture Notes in
Computer Science, pages 226–244, 2000

[8] Knuth, D. Semantics of context free languages. 1968

[9] Kurtev, I., van den Berg, K. Model Driven Architecture
Based XML Processing, ACM Symposium on Document
Engineering, Grenoble, France, 2003

[10] Kurtev, I., van den Berg, K. A Language for Model
Transformations in the MOF Meta-modeling Architecture.
Workshop on Model Driven Architecture: Foundations and
Applications, Linkoping, Sweden, 2004

[11] Li, Q., Kim, M.Y., So, E. Wood, S. XVM: a Bridge between
XML Data and Its Behavior, 13th international conference
on WWW, New York, USA, 2004

[12] Mosses, P. Action semantics. Cambridge University Press.
1992

[13] Mosses, P. Pragmatics of Modular SOS, 9th International
Conference on Algebraic Methodology and Software
Technology, pp. 21-40. 2002

[14] Mozilla Organization, http://www.mozilla.org

[15] Okajima, D. RelaxNGCC - Bridging the Gap Between
Schemas and Programs, Available at: http://www.xml.com

[16] Omelayenko B. and Fensel D., A Two-Layered Integration
Approach for Product Information in B2B E-commerce, In:
K. Bauknecht, S. -K. Madria, G. Pernul (eds.), Electronic
Commerce and Web Technologies, Proceedings of the 2nd
Int. Conference on Electronic Commerce and Web
Technologies, Germany, 2001

[17] OMG. MDA Guide version 1.0.1. OMG document
omg/2003-06-01, 2003

[18] OMG. MOF 2.0 Query/Views/Transformations RFP. OMG
document ad/2002-04-10, 2002

[19] OMG/Unified Modeling Language Specification. 2001

[20] Patel-Schneider, P., Siméon, J., The Yin/Yang Web: XML
Syntax and RDF Semantics, 11th International WWW
Conference, Hawaii, USA, 2002

[21] Psaila, G. and S. Crespi-Reghizzi. Adding Semantics to
XML. In Second Workshop on Attribute Grammars and
their Applications, WAGA'99, 1999

[22] Pihkala K., Honkala M. and Vuorimaa P., A browser
framework for hybrid XML documents. 6th International
Conference on Internet and Multimedia Systems and
Applications, pp 164-169, Kauai, Hawaii, USA, 2002

[23] Reinhold, M. An XML Data-Binding Facility for the Java
Platform. 1999

[24] SAX Project Home Page: http://www.saxproject.org/

[25] Sierra, J., L., Fernandez-Manjon, B., Fernandez-Valmayor,
A., Navarro, A. An extensible and modular processing
model for document trees. Extreme Markup Languages
2002, Montreal, Canada, 2002

[26] W3C. DOM Level 1 Specification, October 1999

[27] W3C. XML Schema Part 0: Primer, Part 1: Structures. 2001

[28] W3C. Synchronized Multimedia Integration Language
(SMIL 2.0), 2001

[29] W3C. XHTML+SMIL, 2002

[30] Zhang, Y., and Xu, B. A survey of semantic description
frameworks for programming languages. SIGPLAN Notices,
vol. 39, 3, pp. 14-30, 2004

169

