
XQuery Containment in Presence of Variable Binding
Dependencies

Li Chen
San Diego Supercomputer Center

9500 Gilman Drive, La Jolla, CA 92093

lichen@sdsc.edu

Elke A. Rundensteiner
CS Department, Worcester Polytechnic Institute

Worcester, MA 01609

rundenst@cs.wpi.edu

ABSTRACT
Semantic caching is an important technology for improving
the response time of future user queries specified over re-
mote servers. This paper deals with the fundamental query
containment problem in an XQuery-based semantic caching
system. To our best knowledge, the impact of subtle dif-
ferences in XQuery semantics caused by different ways of
specifying variables on query containment has not yet been
studied. We introduce the concept of variable binding de-
pendencies for representing the hierarchical element depen-
dencies preserved by an XQuery. We analyze the problem of
XQuery containment in the presence of such dependencies.
We propose a containment mapping technique for nested
XQuery in presence of variable binding dependencies. The
implication of the nested block structure on XQuery con-
tainment is also considered. We mention the performance
gains achieved by a semantic caching system we build based
on the proposed technique.

Categories and Subject Descriptors
F.3 [Theory of Computation]: Logics and Meanings of
Programs; I.1.1 [Computing Methodologies]: Expres-
sions and Their Representation; H.2.8 [Information Sys-
tems]: Database Applications

General Terms
XQuery containment mapping algorithm and theory

Keywords
XQuery Containment, variable binding dependency

1. INTRODUCTION
Due to its fundamental role in many database applica-

tions such as query optimization and information integra-
tion [16], the problem of query containment has received
considerable attention over the past few decades. With the
initial focus on relational queries, researchers have recently
begun to study the containment problem for various frag-
ments of XPath [13, 1, 22, 12] and XQuery [9, 18, 10]. The
key technique of containment mapping for relational queries
[4] has been extended in the new contexts to derive map-
pings between navigation pattern trees and nested XQuery

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

constructs. It has been commonly recognized that extended
containment mapping is central for minimizing XML queries
[23, 9], and for reformulating queries in a mediator system
[9] or a peer-to-peer environment [18].

1.1 Motivation
This work is motivated by the promising application of

semantic caching for answering XML queries using cached
XML views [6, 8]. The idea of semantic caching is that the
(mobile) client maintains both the semantic descriptions and
associated answers of previous queries in its cache, in the
hope of being able to reuse them to speed up the processing
of subsequent queries.

An XQuery-based semantic caching system named ACE-
XQ has been proposed [6, 7] for facilitating XQuery process-
ing in the Web environment. The main techniques exploited
by ACE-XQ include the containment mapping approach for
nested XQuery, XQuery rewriting, and a multi-granularity
replacement strategy. With [8] focussed on the proposed re-
placement strategy and the cache performance evaluation,
we introduce, in this paper, the fundamental query contain-
ment technique underlining ACE-XQ which is the first com-
prehensive practical semantic cache solution for handling
nested conjunctive XQuery.

1.2 The Related Work
In the XML setting, extensive research has focussed on the

query containment problem for regular path expressions on
general cyclic graph databases [3], tree pattern queries and
XPath queries over XML data [13, 1, 22, 12]. Especially the
containment problem for XPath and tree pattern queries has
attracted a lot of attention recently due to the fundamental
role they play in many XML query languages.

Different fragments of XPath have been targeted by differ-
ent works. A well recognized core XPath fragment includes
child axis ‘/’, descendant axis “//”, branching “[]”, and
wildcard ‘*’. It is shown in [13] that query containment for

this fragment, denoted XP {∗,//,[]}, is coNP-complete. If
any of the three constructs “//”, “[]”, and ‘*’ is dropped,
query containment is PTIME. The essence of their contain-
ment mapping technique is the polynomial-time tree homo-
morphism algorithm1, which serves as a sufficient but not
necessary condition for containment of XP {∗,//,[]} in gen-
eral. On the other hand, if tag variables and equality testing
are allowed, query containment is NP-complete. The com-
plexity increases to Πp

2 with disjunctions added. We refer

1Tree homomorphism and tree embedding are exchangeable.

288

the readers to [1, 22, 12] for discussions of the containment
complexity results under different XPath fragments.

However, research on the containment problem for XQuery
is still in its infancy. Besides using XPath expressions as the
navigation mechanism, XQuery also employs other query
constructs such as FLWR expressions and the nesting of
query blocks. These features make XQuery more expres-
sive than XPath. On the other hand, they also impose new
difficulties on the containment problem. Specifically, diffi-
culties arise since an XQuery cannot simply be represented
by a navigation tree pattern. Hence containment mapping
based on tree homomorphism alone is no longer sufficient
for determining XQuery containment.

To our best knowledge, the containment of nested XQuery
has so far been studied only in [9], [18], and [10]. [9] exploits
XQuery containment for query optimization. It utilizes con-
tainment mapping for identifying redundant navigation pat-
terns in a query and later for collapsing them to minimize
the query. In [18], the containment of nested XQuery is
researched for the purpose of rewriting queries posted on
one peer to be answered by another peer. [10] studies the
complexity of the problem regarding completeness.

Targeting different goals, these three works exploit differ-
ent approaches. The containment mapping technique pro-
posed in [9] essentially extends tree homomorphism between
navigation patterns with additional requirements for map-
ping the equality-based where-conditions, groupby id and
groupby value variables. In [18], two types of mappings, i.e.,
a query-head embedding Ehead(Q1, Q2) and a query-body em-
bedding Ebody(Q2, Q1), are employed as the sufficient condi-
tions for deriving Q1 v Q2 (assuming Q1 and Q2 are two
nested XQueries). Ehead embeds the block structure of Q1

into that of Q2 while Ebody embeds the navigation pattern of
Q2 into that of Q1. In [10], containment of nested XQuery is
defined based on XML instance containment. The theoreti-
cal complexity result for methods that ensure completeness
is established.

Among these three works, [10] presents an approach that
guarantees completeness (i.e., no false negative answers).
In answering-queries-using-views scenarios, it is commonly
considered more crucial to guarantee the soundness while
the completeness is often ignored to avoid the high com-
plexity. For example, the containment of nested XQuery in
general is coNEXPTIME when ensuring completeness [10].

In contrast, [9] and [18] attempt to provide more practi-
cal containment mapping techniques by extending tree ho-
momorphism with additional mapping conditions. In [9], a
technique is proposed for identifying redundant navigation
within one query. It considers the mapping of equality-based
where-conditions and that of variables distinguished by the
set or bag semantics they each represent. However, all re-
turn expressions are considered as black-box functions and
ignored in the containment mapping process. This contain-
ment mapping technique is hence a not suitable foundation
for determining the containment relationship between two
queries. This is obvious considering the fact that whether
the direct bindings of variable v or subelements obtained
from further navigation of v’s bindings are returned does
make a major difference in the query result.

Furthermore, neither of the two techniques considers the
effect of dependencies among variable bindings on the query
result and consequently on the containment result. In Sec-
tion 1.3, we give examples of subtle differences in XQuery

semantics caused by different dependencies among the spec-
ified variables. Since these two techniques have failed to
address the critical effect of such differences on the query
containment result, we propose our containment mapping
approach which provides sufficient mapping conditions for
correctly deriving the containment decision.

1.3 Problem Analysis
In this work, we target the containment problem for nested

XQuery. We consider a core fragment of XQuery that allows
nested blocks, conjunctive equality-based conditions, set and
bag semantics. Disjunctions, negations, universal quantifier
and tag variables are not considered. This XQuery fragment
is the same as that being studied in [9]. [18] and [10] study
a subset of this fragment as they exclude the bag semantics.

for $t in document(``bib.xml'')//book/title,
$a in document(``bib.xml'')//book/author

return <pairQ1> $t, $a
</pairQ1>

Q1

for $b in document(..)//book,
$t in $b/title, $a in $b/author

where some $p in $b/price
satisfies $p=30

return <pairQ2> $t,$a/last
</pairQ2> Q2

for $b in document(..)//book
return <pairQ3>

{for $t in $b/title, $a in $b/author
return $t, $a}

</pairQ3> Q3

for $b in document(..)//book
return <pairQ4>

{for $t in $b/title return $t},
{for $a in $b/author return $a}

</pairQ4> Q4

Figure 1: Example Queries

Now let us consider the example queries in Figure 1. All
four queries Qi (i=1..4) specify $t and $a and return their
bindings in the results. Suppose the input document bib.xml
is shown at the left top corner in Figure 2, we can see that
their results RQi (i=1..4) (also shown in Figure 2) are all dif-
ferent due to the subtle differences in their variable specifica-
tions and nested block structures. Suppose that the DTD for
bib.xml specifies <!Element book(title, author∗, publisher?,
price?)>. RQ1 contains six title and author pairs derived
from all combinations of the $t and $a bindings document-
wide regardless of whether the paired title and author ele-
ments belong to the same book. In contrast, the $t and $a
bindings in Q2 are specified based on $b. Therefore, the title
and author elements corresponding to different book parents
do not appear in the same pair in RQ2. For example, t2 is
paired with a1 and a2 but not with a3 in RQ2.

.
. .

…

results

.
p2

a1

author

p5

.title
.p1

t1

.pairQ1

.

.
p6

...
. . .p3 p4

a2t1 a1t2 a2t2 a1t3 a2t3

bib.xml

results

pairQ2
.

.
p1 p2

a1 a2t2 t2
. . .
. .pairQ2

authortitle authortitle

RQ2

.

.
. .

book

authortitle

bib

author.
b2

a2t2 a1

publisher.
b3

pu1
.title

.b1

pr1

.bookbook

.
t1

price title

t3
.

.
. .
pairQ3

results

.
b2 b3.b1 .pairQ3pairQ3

.
authortitle author

a2t2 a1

.

.
. .

pairQ4

authortitle

results

author.
b2

a2t2 a1

b3

title

.b1 .pairQ4pairQ4

.
t1

title

t3
.

RQ4RQ3

RQ1

Figure 2: bib.xml and Example Query Results

The differences in the structure of RQ1 versus that of RQ2

can be intuitively explained by the differences in specifying

289

variable dependencies in Q1 and Q2. That is, the variables $t
in Q2 (denoted by $tQ2) and $aQ2 are defined based on $bQ2,
while $tQ1 and $aQ1 are based on $r (i.e., the default root
variable bound to the root element of document(“bib.xml”)).

We first explain the effect of variable dependencies on the
resulting query result for Q2. When constructing the result
RQ2, since $tQ2 and $aQ2 are defined in the same query
block, the corresponding new element 〈pairQ2〉 is produced
for each tuple in the cartesian product of the bindings of
$tQ2 and $aQ2. Due to the way how $tQ2 and $aQ2 are spec-
ified, the bindings of $tQ2 and $aQ2 derived from the same
binding of $bQ2 preserve the sibling 〈title〉−〈author〉 element
associations under the same parent book element. Such hier-
archical data dependencies in the source XML are preserved
in the intermediate variable bindings based on which the
query result is constructed. In this case, each pairQ2 el-
ement in RQ2 combines bindings of $tQ2 and bindings of
$aQ2 only if they share the same parent binding of $bQ2. In
contrast, the sibling 〈title〉−〈author〉 associations are not
kept in the bindings of $tQ1 and $aQ1. Q1 hence produces
〈pairQ1〉 elements based on the cartesian product of all the
bindings of $t and $a regardless of their respective parent
book elements. Q2 hence preserves a finer hierarchy of ele-
ment dependencies among its intermediate variable bindings
than Q1 does.

We now analyze the effect of such preserved dependencies
on the containment result. Suppose that the containment
mapping technique proposed in [18] is applied to Q1 and
Q2 in Figure 2. Q2 v Q1 would be derived since both
Ehead(Q2, Q1) and Ebody(Q1, Q2) can be established as il-
lustrated in Figure 32. To derive Q2 v Q1, this approach
utilizes not only the navigation pattern based mapping rep-
resented by Ebody, but also Ehead for checking if the variables
returned by Q2 are a subset of those returned by Q1. How-
ever, whether such dependencies among variable bindings
influence the query containment result has not been studied
in either [18] or [9].

.
.

book

$t $a

book
$r

book

$t $a

EbodyQ1 Q2

bib

$b
title author title author

. .

.$r
bib

{$a}

{$t}

Ehead
<pairQ1> <pairQ2>

. .{$a}

{$t}

Figure 3: Illustration of Containment Mapping via
Ehead and Ebody

Assume Q2 is answered using RQ1 based on the contain-
ment result Q2 v Q1. Then there is no way to re-group
the returned bindings of $t and $a in RQ1 by their respec-

2As explained more in detail in [18], Ehead(Q2, Q1) embeds
the nested block structure of Q2 into that of Q2. The dashed
arrows denote the mappings between blocks within which
the corresponding returned variables match. Ebody(Q1, Q2)
embeds the navigation patterns (denoted by the bold tree
edges) specified in Q1 into those in Q2. Ebody(Q2, Q1) but
not Ehead(Q1, Q2) can be established. Hence Q1 6v Q2.

tive book parent elements as required by Q2. Ignoring this
requirement, the produced result of Q2 would contain su-
perfluous pairs, namely, t1−a1, t1−a2, t3−a1 and t3−a2.

1.4 Our Contributions
First, we address the problem of producing superfluous

answers based on the query containment result when ig-
noring the effect of variable binding dependencies in the
containment mapping process. Correspondingly we iden-
tify some important concepts and their connections, as il-
lustrated in Figure 4, to this problem.

element dependecies
(formally HMVDs)

variable binding dep.
(VarTree)

essential variable binding dep.
(minimal VarTree)

query result structure
(TagTree)

XQuery Containment

concernspreserved in

utilizesreduced to

Figure 4: Connection between Preserving of Ele-
ment Dependencies and XQuery Containment

The left hand side flow illustrates the preservation of data
dependencies in the source XML in the intermediate bind-
ings via the specification of variables. The right hand side
flow represents the fact that XQuery containment needs to
take the query result structure constructed based on the
binding dependencies into consideration. Terms enclosed in
the parentheses in Figure 4 will be introduced in Section 2.

Also, we realize that not all the intermediate binding de-
pendencies preserved by a query are necessarily utilized in
constructing the final result. Thus we call a subset of vari-
able binding dependencies being utilized the essential ones
via which both flows are connected.

Second, based on our problem analysis, we propose a con-
tainment mapping technique that considers the containment
of the utilized binding dependencies in the query result. For
this, we first decompose the input query and represent the
two parts of its semantics, i.e., variable binding and result
construction, by respective tree structures. Then we identify
the binding dependencies that are preserved by the former
and utilized by the latter. We call it variable minimization.
Next we propose to employ three types of containment map-
pings for deriving the containment decision.

In sum, we will show that our containment mapping ap-
proach is more comprehensive than the prior works [9, 18,
10] in that it deals with the effect of variable binding depen-
dencies on the query containment result. In other words, it
avoids deriving the query containment decision which may
lead to producing superfluous answers for the contained query
by using the result of the containing query. Like [9] and [18],
our approach does not necessarily ensure completeness.

1.5 Paper Outline
The rest of the paper is organized as follows. In Section 2,

we define the problem of XQuery containment in the pres-
ence of variable binding dependencies. Section 3 gives the
overview of our approach. We describe the pre-step of query
decomposition and minimization in Section 4. This is fol-
lowed by our containment mapping technique in Section 5.
We show the query performance gains achieved by apply-

290

ing the proposed technique in a semantic caching system in
Section 6 and conclude in Section 7.

2. PROBLEM DEFINITION
In this section, we first introduce the notion of hierarchical

multivalued dependencies (HMVDs) which represent a typi-
cal type of data dependencies in the source XML. Also, we
define variable binding dependencies as the HMVDs being
preserved by the query in the intermediate variable bindings.
We then define the problem of nested XQuery containment
in the presence of variable binding dependencies.

2.1 Hierarchical Multivalued Dependencies
It has been recently recognized that studying the exten-

sion of the traditional integrity constraints in the XML set-
ting is both theoretically and practically meaningful. Sev-
eral classes of integrity constraints including key constraints,
path constraints, functional constraints, and inclusion con-
straints have been defined for XML [11]. The more advanced
constraints such as the multivalued dependencies (aka tuple
generating dependencies) have also been studied in [19, 2]
with the goal to develop a normalization theory for XML
and in [15] for mapping XML DTDs to relational schemas.

XPath containment in the presence of DTD constraints
such as sibling constraints and functional constraints has
been investigated in [11]. The semantics of an XPath query
can be captured by a unary pattern tree in which only one
node has its bindings returned as the result while others are
matched but not returned. However in XQuery, even a single
for clause may specify multiple variables which correspond
to an n-ary (n≥1) pattern tree. This is where the challenges
arise for XQuery containment.

Let us first analyze the semantics of a single-block XQuery
for the sake of simplicity. In a single-block XQuery that
utilizes a FLWR expression, the return clause is invoked
for all the cartesian product combinations of the variable
bindings produced by the for clause. These combinations
are determined based on how variables are defined based
on others. As far as we know, no research has studied the
implication of such dependencies on XQuery containment.
This is the task of our work.

Definition 2.1. Given a DTD, suppose ε is a set of bi-
nary edge relations between element type e and its children
element types, each labeled with the corresponding cardinality
relationship 1, ?, * or + 3. For any two descendant element
types x and y of e, if either x or y has a multiple cardinality
relationship (i.e., * or +) with e, then we call the depen-
dency among their corresponding elements in a conforming
XML a hierarchical multivalued dependency (HMVD),
denoted e →→ x|y.

Recall that the notion of multivalued dependency (MVD)
in relational databases defines that if a relation has two or
more multivalued independent attributes (e.g., x and y), ev-
ery value of one attribute (e.g., x) must be repeated with
every value of the other attribute (e.g., y). HMVD extends
MVD in the sense that e, x and y are not attributes in a re-
lation but element types in a DTD. If e, x and y are mapped
to a 3-column relation and their bindings are unnested, then
in each partition with an e binding, every x binding needs
to be repeated with every y binding.
31, ?, * and + respectively represent the 1-1, 1-(0,1), 1-(0,m)
and 1-(1,m) (m ≥1) mappings.

2.2 Variable Binding Dependency
For an XML document D, the dependencies among its

elements which have multiple cardinality relationships with
their respective parents can be represented by HMVDs. A
query imposed against D specifies a subset of HMVDs (di-
rect or derived) to be preserved by its variable bindings.

Definition 2.2. Suppose a given query defines variable
vj based on vi, e.g., for vj in vi(/|//)pj , where pj is the rel-
ative XPath expression used for deriving vj’s bindings from
each binding of vi. We call this dependency of vj ’s bindings
on their respective vi bindings a variable binding depen-

dency, denoted vi

pj

� vj .

For example, $b
/title
� $t and $b

/author
� $a hold for Q2∼4

in Figure 2. They all specify their corresponding $t and $a
based on $b.

The variable binding dependency relationship satisfies:

vi

pj

� vj , vj

pk

� vk ⇒ vi

pjk

�∗ vk (transitivity rule),

where pjk is the path expression obtained by concatenat-
ing pj and pk, and �∗ denotes an induced variable binding
dependency. Given an XQuery, the direct variable binding
dependencies extracted from it compose a base dependency
set from which the non-direct dependencies can be derived
inductively.

For example, Q2, Q3 and Q4 in Figure 2 define $b via
an absolute path expression //book from the root of the
source XML “bib.xml”. Suppose variable $r is used as a
default root variable to be bound with the root element,

then $r
//book

� $b. Also since $b
/title
� $t and $b

/author
� $a,

we can derive $r
//book/title

�∗ $t and $r
//book/author

�∗ $a. In
contrast, Q1 in Figure 2 directly defines $t and $a based

on the root variable $r. Hence it has $r
//book/title

� $t and

$r
//book/author

� $a.

2.3 HMVD and XQuery Containment
To tackle XQuery containment in the presence of vari-

able binding dependencies, we cannot solely utilize tree ho-
momorphism between the two respective navigation pattern
trees. Additional conditions need to be asserted in the con-
tainment mapping process to deal with the effect of variable
binding dependencies on the query semantics.

Let us consider the containment relationship between Q1

and Q2 in Figure 2 again. A tree embedding of the pat-
tern tree of Q1 into that of Q2 exists, as illustrated by
Ebody(Q1, Q2) in Figure 3. As described before, if we were to
use RQ1 (see Figure 2) to answer Q2 according to Q2 v Q1,
then it will result in the superfluous answer pairs t1−a1,
t1−a2, t3−a1 and t3−a2. With the new concepts introduced
in this section, we can see that this is because the HMVD
$b →→ $t|$a is required by Q2 but not preserved by Q1.

Suppose that Vars(Q) and Rets(Q) are the defined vari-
ables and the returned expressions in a query Q respectively.
All the variables occurring in Rets(Q) must be defined in
Vars(Q) for Q to be safe. On the other hand, variables
occurring in Rets(Q) may be a subset of Vars(Q). That
is, not all the variable binding dependencies are utilized in
the query result. To determine query containment, we need
to reason about not only the containment of the returned

291

bindings due to Rets(Q), but also the containment of the
utilized variable binding dependencies due to both Vars(Q)
and Rets(Q). Correspondingly, we now define XQuery con-
tainment in the presence of variable binding dependencies.

Definition 2.3. Let Q1, Q2 be two XQueries. Q1 v
Q2 if and only if: 1) there exists a containment mapping
from Ret(Q1) to Ret(Q2), and 2) the HMVDs preserved in
Vars(Q1) and utilized by Ret(Q1) are subsumed by those
preserved in Vars(Q2) and utilized by Ret(Q2).

For example, the HMVD $b →→ $t|$a is reflected in RQ2

in Figure 2 but not in RQ1. That is, the bindings of $tQ1

and $aQ1 are paired document-wise in RQ1, whereas those of
$tQ2 and $aQ2 are grouped by their common book elements
in RQ2. The former pairs can be derived from the latter by
pairing all the $tQ1 bindings with $aQ1 bindings regardless
of if they came from the same book parents. However, there
is no way to recover the dependencies of $tQ1 and $aQ1

bindings on their common book elements as required by Q2.

3. OVERVIEW OF OUR APPROACH
The main idea of our XQuery containment approach is to

incorporate the checking of the containment of the utilized
HMVDs in addition to the checking of the pattern tree ho-
momorphism (i.e., the embedding of the containing query
pattern tree into that of the contained query). The main
steps of our approach are depicted in Figure 5.

XQueries

Containment Mapping XQuery Rewriting
mappings

view query
TagTree

VarTree TagTree+

XQuery Normalization & Decomposition

Variable Minimization

Figure 5: Containment Checking Flow

• XQuery decomposition. We separate the variable defini-
tion part from the result construction part and represent
each using a tree structure. The former tree (i.e., VarTree)
captures all the preserved HMVDs. It is different from the
navigation pattern tree used in [23], as will be explained
later. The latter tree (i.e., TagTree) is used to represent
the result construction template. The TagTree also indi-
cates how the preserved HMVDs are utilized in the result
construction.
• Variable minimization. We identify the variables that are
neither directly nor indirectly utilized in the result construc-
tion and degrade them to navigation steps. This way, we de-
rive a minimal set of variable binding dependencies for which
we conduct the containment checking. This is a critical step
for ensuring the correctness of the containment result.
• Containment mapping. We conduct three types of con-
tainment mappings. First, we perform the minimal VarTree
embedding to check the containment of the utilized HMVDs.
Second, we check the tree embedding relationship between
the navigation patterns. Lastly, we apply a mapping that

deals with the effects of block-structure-induced variable de-
pendencies on the containment of XQuery.
• XQuery rewriting. If the new query Q1 is contained within
a cached query Q2, then the mapping Mc established in the
containment mapping phase can be used for rewriting Q1

against the query result structure of Q2. The basic idea
is to substitute each path expression p in Q1 for its corre-
sponding path expression p′ in the TagTree of Q2 based on
p′ = Mc(p)◦Mt, where Mt represents the mapping of path
expressions from the VarTree of Q2 to its TagTree. Namely,
p′ is computed by the composition of Mc and Mt. We skip
the details of query rewriting in this paper.

4. DECOMPOSITION AND MINIMIZATION

4.1 XQuery Decomposition
The purpose of query decomposition is to separate the

semantics of variable bindings from that of result construc-
tion. However, the semantic distinction is sometimes not
very easily extracted from the surface syntax. For example,
not necessarily all expressions in return clauses represent the
return construction semantics. Due to the flexibility in com-
posing a nested XQuery, FLWR expressions may be nested
within a for clause, e.g., for v2 in (for v1 in e1 return e2)
return e3. In this case, e2 in the nested return clause does
not result in returning its bindings in the ultimate query
result but only serves for specifying v2’s binding.

Therefore, we need to first normalize the query to derive a
form based on which this semantic distinction is made easy.
Then we represent the two semantics respectively using two
tree structures, which are connected via variable bindings.

4.1.1 The Normalization Rules in Use
Our goal is that the normalized query can facilitate the

separation of the path expressions that are to be output in
the result from those that are used for specifying variable
bindings, such that the later query decomposition step is
made easy. There are a number of XQuery normalization
techniques [21, 17, 9] available. They overlap in some com-
monly used normalization rules. For example, unnesting the
FLWR expression within a for clause (as illustrated before)
is a standard rule shared by many techniques.

We adopt a set of query normalization rules including
rules (R2)∼(R5), (R7)∼(R10), and (RG1) from [9]. We
also apply rules (R1), (R6), (R11), and (R12), but in their
reverse directions. Rule (R13) does not apply in our con-
text since we exclude disjunctions from our XQuery frag-
ment. Since we consider the XQuery fragment with no ag-
gregations, we can also apply the rule that substitutes each
let-variable with its definition. After applying these rules,
the query is free of let clauses, empty sequence expressions
and unit expressions. Also, only return clauses may contain
nested FWR4 expressions.

4.1.2 Decomposition into VarTree and TagTree

Definition 4.1. Given a normalized XQuery Q, a tree
structure named VarTree=(V, E, L) can be constructed
based on the extracted variable binding dependencies. Each
defined variable is denoted by a var node v ∈ V . Each

4Letter L for representing let is removed since the normal-
ized query is let-clause free.

292

dependency vi

pj

� vj corresponds to an edge e = (vi, vj)∈ E
labeled pj ∈ L. We refer to e the derivation edge of vi.

The VarTree is different from the pattern tree concept re-
ferred to in other research [23]. An edge in the pattern tree
corresponds to an axis step (/ or //) and the associated el-
ement type test. In contrast, a derivation edge in VarTree
denotes the navigation pattern used for deriving a child vari-
able from its parent. Actually this is indicated by the label
on a derivation edge which is an XPath expression composed
of possibly multiple steps and branches. In this sense, the
VarTree can be considered as a nested tree with each edge
encapsulating the navigation pattern corresponding to the
label on it.

Definition 4.2. For a normalized XQuery Q, a tree struc-
ture conforming to its nested block structure can be con-
structed to represent the result construction semantics. It
is called TagTree=(N,A). Each block node n ∈ N is a
quadruple [V̄ , C̄, R̄, T̄] and each edge a=(ni, nj)∈A denotes
that block nj is nested within block ni. Furthermore,

• V̄ , C̄, R̄, and T̄ respectively represent the variables,
where-conditions, return expressions, and to-be-constructed
new elements specified in the corresponding block;

• C̄ is denoted by a forest of constraint pattern trees each
rooted at a variable defined in the local or an ancestor
block. Equality conditions are associated with the cor-
responding node(s);

• If unnesting of the bindings of variables in V̄ results in
a non-empty set and conditions C̄ are satisfied, then
the construction of a new element denoted by T̄ will be
invoked for each tuple in that unnested binding set;

• T̄ may have either none, one, or a sequence of tag
names in the form 〈t1〉〈t2〉 . . . 〈tn〉. This means that
the returns of R̄ will be enclosed by an empty tag, 〈t1〉
and 〈/t1〉, or 〈t1〉〈t2〉 . . . 〈tn〉 and 〈/tn〉 . . . 〈/t2〉〈/t1〉.

We now extend the VarTree structure with a few more
features. Given the TagTree TTQ of a query Q, we get each
return expression v/pm in a R̄ of TTQ and correspondingly
attach to the var node for v in the VarTree V TQ a leaf node
(also referred to as ret node). Each ret node represents the
corresponding return expression. To distinguish var nodes
from ret nodes, we use solid circles to denote the former and
use hollow circles for the latter.

The second extension is to shift the constraints and con-
ditions in the C̄’s of TTQ to be represented in V TQ. Specif-
ically, if the constraint pattern represented by the XPath
expressions (with or without variables defined in their re-
spective where clauses5) is derived from v, or the equality-
based conditions are affiliated to where-variables that are
dependent of v, then we move them in the filter “[]” of the
XPath expression p which labels the derivation edge of v in
V TQ. Intuitively, this can be done because these constraints
and conditions are, in a sense, analogous to the relational
selection operations. They hence can be pushed to be exe-
cuted in the navigation pattern matching stage for deriving
variable bindings.

5Where-variables refer to variables defined in where clauses,
while for-variables are those defined in for clauses. Un-
less indicated otherwise, “variable” means a for-variable. A
where-variable can be removed since its life scope is refrained
within the local where clause.

For example, the extended VarTrees and TagTrees of ex-
ample Q1 and Q2 are depicted in Figure 6 respectively.
Note that the where-condition “some $p in $b/price satisfies
$p=30” in the C̄ of the bottom block in TTQ2 is serialized
into “price=30” and then moved in “[]” as the filter expres-
sion for defining $b in V TQ2.

.. .$t $a

//book/author
$r

VTQ1
bib

//book/title

$t $a

({$r};;;<results>)

({$t,$a};;{$t,$a};<pairQ1>)

TTQ1

... .$t $a

/author
$b

VTQ2 bib

/title

$t $a/last

$r
//book[price=30]

({$r};;;<results>)

({$b,$t,$a};C;{$t,$a/last};<pairQ2>)

TTQ2

Figure 6: VarTrees and TagTrees of Q1 and Q2

However, we must carry out this VarTree extending pro-
cess with caution. That is, the shifting of return expressions
in R̄ and where-conditions in C̄ would not change the query
semantics only if the to-be-attached var node v is defined in
the same block where R̄ and C̄ are specified. Some return
expressions in R̄ and where-conditions in C̄ refer to vari-
ables that are defined in ancestor blocks. By moving them
up along the nested block hierarchy to be attached to their
referring variables, more or fewer bindings than desired may
be returned. For example, suppose the example query Q3

in Figure 1 also specifies the where-condition “some $p in
$b/price satisfies $p=30”, however in the inner block. Then
attaching “[price=30]” to the definition expression of $b in
the outer block may cause generating fewer <pairQ3> ele-
ments due to the push-up condition. We hence leave such re-
turn expressions and where-conditions in their original block
nodes in TTQ.

The VarTree with these extensions is comprehensive enough
to also represent the to-be-returned bindings and the effect
of where-conditions on variable bindings. It is also notewor-
thy that the VarTree and TagTree of a query are connected
via variables. In particular, all variables in V̄ ’s and those
referred to in R̄’s in the TagTree must be present as var
nodes in the VarTree for the query to be safe.

4.2 Use-based Variable Minimization
We explained earlier that the VarTree of a query is a

nested tree with navigation patterns encapsulated in its deriva-
tion edges. On one hand, the query semantics stays the same
if we fully expand the VarTree by unnesting all the encap-
sulated navigation patterns and by naming each node in
them with a variable. On the other hand, it is also possible
not to affect the query semantics by degrading some vari-
ables into navigation pattern nodes to be encapsulated in
derivation edges. We call the latter a variable minimization
process since the number of var nodes is reduced (however
with more complex navigation patterns encapsulated) and
the VarTree structure seems minimized. A variable can be
minimized without affecting the query semantics only if it
does not participate in preserving any HMVD that is uti-

293

lized in the result construction, nor serve in any way as a
constraint context (will be explained later) for the return
expressions.

Our goal here is to explore the opportunities for variable
minimization to obtain the minimal VarTree (i.e., no further
minimization is possible). This is critical since the later
containment checking of utilized HMVDs can be based on
the derived minimal VarTrees of two given queries.

Definition 4.3. Given an XQuery Q, suppose D is the
source XML and v is a variable defined in Q. If by substi-
tuting all occurrences of v with v’s definition, Q’s result will
not change for any XML data instance that conforms to the
same DTD as D, then we say v is nonessential. Otherwise
v is essential.

Now we provide practical criteria for distinguishing essen-
tial variables from non-essential ones based on their uses.

Explicit vs. Implicit Uses. A variable v may either be
used for defining another variable or in a return expression.
We call the former case a Var use of v and the latter a Ret
use of v. Both are referred to as explicit uses of v in general,
regardless of where it is used (i.e., either in the local block
where v is defined or in descendant blocks).

Besides explicit uses, v may also be implicitly used as a
“loop counter” for invoking returns. For example, when the
block where v is defined encloses return expressions referring
to other variables than v, then the cardinality of v’s bindings
is used to determine the number of times that the returns
are to be invoked. In the extreme case when the binding set
is empty (i.e., cardinality is 0), no return will be invoked. In
this sense, v serves as the constraint context for the returns.

If a variable v has neither explicit nor implicit uses, we
call it has no-use. Such variables are definitely nonessential
and can be minimized. Otherwise, the essentiality of v de-
pends on the combination of different uses and the number
of variable use occurrences.

One vs. Multiple Uses. Basically, v is essential if it
has at least two explicit uses, being either Var or Ret uses,
or a Ret use and an implicit use. The detailed case studies
and rationale are depicted in Figure 7.

if v has no explicit use
if v has no implicit use either case 1: no-use
then v is nonessential
else v is essential # since removing v would cause the lost of ``loop counter'‘ .

else if v has more than one explicit use (Var or Ret) case 2: multiple uses
then v is essential # since it is necessary for preserving theHMVDs among

its bindings and those of its dependent variablesor return expressions.
else (i.e., exactly one explicit use)

if v has no implicit use case 3: one use
then v is nonessential # since no two variables or return expressions have co-

dependencies with v, minimizing v causes no lost of HMVDs or condition changes.

else
if v has one Ret use case 4: one ret with implicit uses
then v is essential # since removing v would cause lost of ``loop counter'‘ .
else (i.e., v has one Var use) case 5: onevar with implicit uses

v is nonessential # since no return expression will be affected by only v
but not u due to their common life scope, and v occurs only in u'sdefinition.

Essential Variable Identification Procedure

Figure 7: Identifying Variable Essentiality

Lemma 4.1. All essential variables can be correctly iden-
tified by our analysis in Figure 7 based on variable uses. 2

Example 4.1. We use Q4 in Figure 2 to illustrate the
minimization process. Before minimization (as shown in
Figure 8), the var node for $tQ4 (denoted by the solid cir-
cles) in V TQ4 and that for $aQ4 each have one dependent
ret node (denoted by the hollow circles). Hence $tQ4 and
$aQ4 each have one Ret use. Also, the original TTQ4 re-
veals that $tQ4 and $aQ4 each are specified alone in a bot-
tom block. Thus they have no chance to affect any other
return. This means that $tQ4 and $aQ4 each have no im-
plicit use. Therefore, the var nodes for $tQ4 and $aQ4 in
V TQ4 can be minimized according to the analysis of case 3
in Figure 7. Correspondingly, the XPath expressions on the
ret nodes are changed to $b/title and $b/author respectively
by substituting the variable occurrences by their definitions.

{$r};;;<results>

{$b};;;<pairQ4>

{$t};;{$t};<> {$a};;{$a};<>

$r

$b

$t $a

$t $a

bib

//book

/title /author

VTQ4 TTQ4

{$r};;;<results>

{$b};;{$b/title,$b/author};<pairQ4>

$r

$b

bib

//book

/title /author

VTQ4 TTQ4

before

after
minimization

Figure 8: Minimization Example

5. XQUERY CONTAINMENT MAPPING
In this section, we present our containment mapping tech-

nique which is composed of three types of mappings. The
first two mappings are based on the obtained minimal VarTrees,
while the last one is based on the TagTrees.

5.1 VarTree-based Containment Mapping
Given two queries Q1 and Q2, the first mapping is to check

the containment of the utilized HMVDs in two queries by
conducting tree homomorphism (i.e., tree embedding) be-
tween their VarTrees. Suppose the embedding is from V TQ1

to V TQ2. Then the second mapping is to make sure that
the navigation pattern used for deriving each var node in
V TQ1 implies a more restricted constraint than that for the
matched var node in V TQ2. These two mappings are called
MAC mapping and MIC mapping respectively, indicating
that the former is conducted at the macroscopic level of the
VarTree (i.e., mapping of var nodes) while the latter is per-
formed at the microscopic level of the VarTree (i.e., mapping
of navigation patterns encapsulated in derivation edges).

5.1.1 MAC Mapping
We now extend the traditional tree homomorphism (namely

based on root, label, and ancestor-descendant relationship
preserving) to define the MAC mapping.

Definition 5.1. Suppose V T1 and V T2 are the minimal
VarTrees of Q1 and Q2 respectively. For determining Q1v
Q2, there must be a MAC mapping from V T1 to V T2, de-
noted by Φ(V T1) = V T2, such that the following conditions
are satisfied:

294

C1) roots(V T1) ⊆ roots(V T2),

C2) for any node u∈V T1, there is a match Φ(u)∈V T2

such that T (u)=T (Φ(u)) if Φ(u) is a var node, and
T (u) <: T (Φ(u)) if Φ(u) is a ret node (T returns
the type of the element, and <: denotes the subtype-
supertype relationship),

C3) u is an ancestor of v for all u, v ∈ V T1 if and only
if Φ(u) is an ancestor of Φ(v) in V T2, and

C4) if u is a var node in V T1, then Φ(u) is either a var
or a ret node; if u is a ret node, then Φ(u) must be
a ret node.

Below we explain each of these required conditions.

C1: Root inclusion6. This condition requires that
each source XML document referred to in Q1 must also
be referred to in Q2. Correspondingly in the VarTrees,
roots(V T1) returns the URLs of the source XML documents
involved in Q1, which should be a subset of those returned
by roots(V T2).

C2: Mapping of element types. This condition re-
quires a total but not necessarily injective mapping from
nodes in V T1 to those of V T2. In addition, a node u in V T1

must be mapped to a node in V T2 that has either the same
type or a supertype7 of u’s depending on if the matched
node is a var node or a ret node. The element type of a
node can be inferred from the XPath expression on its in-
coming derivation edge. u can be mapped to a super-type
ret node Φ(u) because the associated bindings of Φ(u) are
all deeply returned (due to the semantics of a return expres-
sion) to enable the retrieval of u’s bindings from subtrees of
Φ(u)’s bindings in Q2’s result.

C3: Preservation of ancestorships. In a minimal
VarTree, nodes represent essential variables and the HMVDs
among them are captured by their ancestor-descendant rela-
tionships. Therefore, if all the ancestor-descendant relation-
ships in V T1 have correspondence mappings in V T1, then
it means that the to-be-utilized HMVDs required by Q1 are
all preserved by Q2 and also present in Q2’s result.

C4: Correspondence of construct types. This con-
dition checks the correspondence between query construct
types. A var node represents a for expression while a ret
node denotes a return expression. The bindings of a ret
node are definitely returned whereas those of a var node
may be used for constructing new elements correspondingly.
Therefore, a var node can be mapped to a ret node and still
get the correct bindings, while a ret node cannot be mapped
to a var node since the new elements in Q2’s result rather
than the original bindings would be returned in doing so.

We can see from the above conditions that the MAC map-
ping ensures that all the essential variable bindings, the
HMVDs among them, and their attached returns required
by Q1 are preserved in the result of Q2.

5.1.2 MIC Mapping

6Our technique allows a query to involve more than one
XML document. In this case, the corresponding VarTree
is actually a forest of trees, which may be connected by
equality conditions on variables across trees.
7Here the concept of subtype-supertype is not the same as
those in the object-oriented modeling domain. Instead, it
corresponds to the element inclusion hierarchy in the DTD.

In addition to the MAC mapping, we need to check if the
binding set of each node in V T1 is indeed a subset of that of
its match in V T2. This is guaranteed by the MIC mapping,
which essentially checks XPath containment.

Definition 5.2. Let V T1 and V T2 be the minimal VarTrees
of Q1 and Q2 respectively. Suppose Φ(V T1)=V T2 according
to the MAC mapping. In MIC mapping, tree homomor-
phism is checked between the encapsulated navigation pat-
terns for each pair of matched nodes. Two steps are carried
out for each node u in V T1:

1. If u 6∈ roots(V T1), concatenate the XPath expressions
along the path from Φ(parent(u)) to Φ(u);

2. Assume that the XPath expression on the derivation
edge of u is p1 and the one obtained from step (1) is p2.
p1⊆p2 is checked with ⊆ denoting XPath containment
(i.e., there is a tree homomorphism from the pattern
tree representation of p2 to that of p1

8).

Note that if a pair of parent-child nodes (p, c) in V T1

maps to a pair of ancestor-descendant nodes (a, d) in V T2

by the MAC mapping, then p2 is the concatenated XPath
expressions originated from a to d. This implies that, to
make Q1vQ2 hold, more essential variables may be speci-
fied in Q2 than Q1 to preserve more HMVDs in Q2’s result.
The MIC mapping makes sure that p2, the XPath expres-
sion used for deriving d’s bindings from a’s, imposes a less
restricted pattern constraint than p1, the XPath expression
used for deriving c’s bindings from p’s.

.. .$t $a

//book/author
$r

VT1

bib

//book/title

$t $a

... .$t $a

/author
$b

VT2
bib

/title

$t $a/last

$r

?

... .$t $a

/author
$b

VT3

bib

/title

$t $a

$r

//book[price=30] //book

<:

Figure 9: MAC Mapping between Minimal VarTrees

Example 5.1. Figure 9 illustrates two MAC mappings.
One is between the two VarTrees of Q1 and Q2 in Figure 1.
Φ(V T2)6=V T1 as shown on the left hand side. For one rea-
son, the var node $b in V T2 has no match in V T1 that sat-
isfies C2. We can hence derive Q2 6⊆Q1.

The second mapping is between the two VarTrees of Q2

and Q3 in Figure 1. The right hand side of Figure 1 shows
Φ(V T2)=V T3, i.e., Φ($rQ2)=$rQ3, Φ($bQ2)=$bQ3, Φ($tQ2)=
$tQ3, Φ($aQ2)=$aQ3, Φ($t′Q2)=$t′Q3, and Φ($a/last)=$a′

Q3

($t′Q2, $t′Q3, and $a′
Q3 are the ret nodes). The mapping

Φ($a/last)=$a′
Q3 holds due to T ($a/last)= last, T ($aQ3)=

author, and last≤:author.
The MIC mapping between the navigation pattern trees

encapsulated in the derivation edges of V T2 and those of
V T3 is also successful. For example, the pattern tree for the
XPath expression “//book” in deriving $bQ3 can be embedded

8Our XQuery fragment allows XPath(//,*,[]), for which the
complexity of containment is CoNP-complete. However, the
XPath containment complexity is reduced to PTIME if only
two out of the three features are included. We refer the
readers to [13] for the details of XPath containment.

295

into that for “//book[price=30]” in deriving $bQ2. Note that
the tree embedding direction for XPath containment p1⊆p2

is from p2 to p1.

5.2 TagTree-based Containment Mapping
We now address the implications of nested block structure

on the containment of XQuery.
One intuitive example of such implications is the reliance

of the return semantics on the emptiness of variable binding
set(s). For example, note that since Q2 in Figure 1 specifies
both $tQ2 and $aQ2 in the outer block, the construction of
a new <pairQ2> element occurs only when a book element
has both title and author subelements. In other words, if
the binding set of $aQ2 is empty for a specific $bQ2 binding
as for example for b1 and b3 in the source XML in Figure 2,
then there will be no invocation of the return to construct
the new elements.

Contrary to this example, the construction of <pairQ3>
elements for Q3 in Figure 2 is solely based on the bindings of
$bQ3, irrelevant of the bindings $tQ3 and $aQ3. The reason
lies in the nested block structure of Q3 (i.e., Q3 has two
query blocks versus that Q2 has just one). While variables
specified in Q3 are the same as those in Q2, they however are
placed in different blocks (i.e., $tQ3 and $aQ3 are specified
and returned in the inner block while $bQ3 is defined in the
outer one) as oppose to being put in the same block as those
in Q2. Consequently, Q2 v Q3. Similarly, we have Q3 v Q4.

Recall that the TagTree structure of a query conforms to
the nested block (see its definition in Definition 4.2). The
V̄ and C̄ in an outer block together compose the evaluation
context for those in its descendant blocks. Also, variables in
the same V̄ affect each other in the sense that their cartesian
product would produce no tuple if any variable member in
V̄ has an empty binding set.

Definition 5.3. Let TT be the TagTree of query Q and
n=[V̄ , C̄, R̄, T̄] be a block node n in it. Variables in V̄ mu-
tually depend on each other. Also, they all depend on those
variables defined in n’s ancestor block nodes. We call such
dependencies region dependencies and denote them by ↪→.

Intuitively, if there is a variable binding u � v, then v can
only be defined either in the same block or a descendant
block of where u is defined, i.e., u ↪→ v. However, we cannot
imply u � v from u ↪→ v. This is formally stated as below.

Lemma 5.1. For any two variables u and v of Q, if u�v,
then u ↪→ v. 2

5.2.1 Block Mapping
We now define a third mapping that complements the

previously defined MAC and MIC mappings.

Definition 5.4. Let TT1 and TT2 be the TagTrees of Q1

and Q2 respectively. The block mapping is a one-to-many
mapping function θ from each block node n of TT1 to nodes
of TT2, denoted by θ(TT1)=TT2, such that n=(V̄ , C̄, R̄, T̄)
in TT1 and its image set S=θ(n) in TT2 satisfy:

C1′) for every variable u ∈ V̄ , Φ(u) ∈
S

ni
V̄i (ni∈S),

C2′) for any two variables w, x∈
S

ni
V̄i (ni∈S), if w↪→

x, then there must be u and v in TT1, such that
Φ(u)=w, Φ(v)=x, u↪→v, and

C3′) any ci ∈
S

ni
C̄i (ni∈ S) can be implied by a con-

dition c ∈ (C̄ ∪
S

mi
C̄′) (mi is an ancestor block

node of n).

C1’: Containment of variables. This condition is ac-
tually used for establishing the θ mappings (i.e., finding for
each block node n in TT1 its image node set S) based on
the VarTree node matches. Intuitively, a block node ni in
TT2 is included in S if any variable in it is the match of any
variable u ∈ V̄ in n. V̄ and

S

ni
V̄i denote variables in n and

the union of those defined in n’s images ni∈S respectively.

C2’: Implication of region dependencies. If a vari-
able w in an image node ni of TT2 is involved in a region
dependency (e.g., w↪→x), then C2’ ensures that there must
be a region dependency between the corresponding variables
in block nodes of TT1. In other words, the region dependen-
cies with matched variables in TT2 involved must be a subset
of those among the corresponding variables in TT1.

C3’: Implication of where-conditions. Suppose ni

in TT2 is an image node of the node block n in TT1. C3’
checks if every where-condition ci left in ni can be implied
from a where-condition c either in n or an ancestor block of
n (i.e., c ∈

S

mi
C̄′, with mi∈ancestors(n)).

In a nutshell, C1′ ∼ C3′ required by the block mapping
make sure that Q1 must assert more restricted constraints,
i.e., region dependencies and where-conditions, than Q2 does.

Example 5.2. Suppose that two adjacently nested blocks
n1 and n2 in TT1 define variables u and v respectively.
There is no other variable in n1 or in n2. We also sup-
pose that Φ(u) = x and Φ(v) = w, and that x and w are
defined in the same block n in TT2. By condition C1′, we
have θ(n1) = {n} and θ(n2) = {n}. We derive x ↪→w and
w ↪→x due to the mutual region dependencies asserted by a
block node. Also, from the enclosing relationship between n1

and n2, we know that u ↪→v but v 6↪→u. C2’ is not satisfied
based on these facts. Consequently, the block mapping fails
and we derive Q1 6vQ2.

Putting all three types of containment mappings together,
we now have a sound (not generally complete) solution for
XQuery containment in the presence of variable binding de-
pendencies.

Theorem 1. Given two XQueries Q1 and Q2, Q1 v Q2

if there exist a MAC mapping Φ(V T1)=V T2, a MIC mapping
p1⊆p2 (i.e., the encapsulated XPath containment) for every
matched node pair, and a block mapping θ(TT1)=TT2. 2

6. SYSTEM AND EVALUATION
Based on our proposed containment mapping approach

for XQuery, we have designed and implemented a semantic
caching system called ACE-XQ [6, 7]. The ACE-XQ system
is developed using Java 1.3. It utilizes the IPSI-XQ engine
[14] installed at both the cache and the remote server sites to
execute the rewritten query and the original query respec-
tively. Source XML documents are hosted at the server.

The first set of experiments is for validating our contain-
ment mapping and rewriting methods for XQuery. For this,
we designed some query workload9 that includes queries that
are similar to those W3C use cases [20] and are within the
scope of our XQuery fragment. The experiment shows that
the results produced by running a query with and without

9We mainly focus on the “refining” case. Namely, the hit
ratio of a new query being contained in a cached one is high.

296

0

20

40

60

80

100

120

140

175 890 1800
Source XML Document Size (Kbytes)

Q
ue

ry
 R

es
po

ns
e

T
im

e
(s

)

contained/non-caching
contained/caching
overlap/non-caching
overlap/caching

Figure 10: Query Response Times for Different Doc-
ument Sizes w/o Caching

the attempt of conducting containment mapping and rewrit-
ing it against a containing view result are the same.

The second set of experiments is to evaluate the query
performance with and without the semantic cache. As ex-
pected, Figure 10 shows the improved query performance by
up to 10 folds for the totally contained cases in our setting.

Table 1 shows the break down of the query response time
for a contained case into the computation overhead (i.e.,
query decomposition and minimization, containment map-
ping, and rewriting) and the query evaluation time. We
see that the overhead is considerably small compared to the
query evaluation time. This implies that although the com-
plexity of our XQuery containment approach is NP-complete
in general (since all three mappings are tree homomorphism
extensions with additional checking of equivalence condi-
tions, of the inclusive relationships between element types,
etc.), it is efficient and practical in many real scenarios.

XML Decomp. & Cont. Query Query
Size Minimization Mapping Rewriting Execution

175KB 0.8ms 8.8ms 5.2ms 173.6ms
890KB 0.8ms 9.2ms 5.4ms 1068.8ms

1800KB 0.8ms 9.1ms 5.2ms 4525.4ms

Table 1: Processing Time Decomposition

Extensive experimental studies can be found in [8, 5].

7. CONCLUSION
In this paper, we proposed a containment mapping ap-

proach that handles the effects of variable binding depen-
dencies and the nested block structure on XQuery contain-
ment. Our approach provides sufficient conditions for solv-
ing nested XQuery containment.

An intermediate future work would be to incorporate the
XQuery logical optimization technique in [9] in our normal-
ization step to reduce the possible navigation redundancies
in the VarTree representation. This helps to prune the space
for conducting containment mapping. However, the lack of
this optimization step as of now does not impact the sound-
ness of the approach.

The XQuery fragment defined in this paper provides a
good scope for us to focus on a set of important XQuery
features with respect to the containment problem. We plan
to extend the proposed containment mapping approach to

accommodate a broader fragment of XQuery that includes
disjunctions, aggregations, and other features as well as to
consider more general constraints in XML and XQuery.

8. REFERENCES
[1] A. Deutsch and V. Tannen. Containment of Regular Path

Expressions under Integrity Constraints. In KRDB, Rome,
Italy, pages 1–11, June 2001.

[2] M. Arenas and L. Libkin. An Information-Theoretic
Approach to Normal Forms for Relational and XML Data.
In PODS, San Diego, CA, pages 15–26, 2003.

[3] D. Calvanese, D. Giacomo, and M. Lenzerini. Rewriting of
Regular Expressions and Regular Path Queries. In PODS,
Philadephia, PA, pages 194–204, 1999.

[4] A. K. Chandra and P. M. Merlin. Optimal Implementations
of Conjunctive Queries in Relational Data Bases. In STOC,
pages 77–90, 1977.

[5] L. Chen. A Semantic Caching System for XML Queries.
Dissertation, WPI, 2003.

[6] L. Chen and E. A. Rundensteiner. ACE-XQ: A
CachE-aware XQuery Answering System. In WebDB, pages
31–36, June 2002.

[7] L. Chen, E. A. Rundensteiner, and S. Wang. XCache - A
Semantic Caching System for XML Queries. In SIGMOD
demonstration paper, Madison, Wisconsin, page 618, 2002.

[8] L. Chen, S. Wang, and E. A. Rundensteiner. Evaluation of
Replacement Strategies for XML Query Cache. Data and
Knowledge Engineering Journal (DKE), 49(2):145–175,
2004.

[9] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT
Logical Framework for XQuery. In VLDB, Toronto,
Canada, pages 168–179, 2004.

[10] X. Dong, A. Halevy, and I. Tatarinov. Containment of
nested xml queries. In VLDB, Toronto, Canada, pages
132–143, 2004.

[11] W. Fan and J. Simeon. Integrity Constraints for XML. In
PODS, Dallas, TX, pages 23–34, 2000.

[12] F. Neven and T. Schwentick. XPath Containment in The
Presence of Disjunction, DTDs, and Variables. In ICDT,
Siena, Italy, pages 315–329, 2003.

[13] G. Miklau and D. Suciu. Containment and Equivalence for
an XPath Fragment. In PODS, Madison, Wisconsin, pages
65–76, June 2002.

[14] IPSI-XQ.
http://ipsi.fhg.de/oasys/projects/ipsi-xq/index e.html.

[15] D. Lee and W. W. Chu. Constraints-Preserving
Transformation from XML Document Type Definition to
Relational Schema. In ER, Salt Lake City, Utah, pages
323–338, 2000.

[16] A. Levy. Answering Queries Using Views: A Survey. VLDB
Journal, pages 270–294, 2001.

[17] I. Manolescu, D. Florescu, and D. Kossmann. Answering
XML Queries on Heterogeneous Data Sources. In VLDB,
Roma, Italy, pages 241–250, 2001.

[18] I. Tatarinov and A. Halevy. Efficient Query Reformulation
in Peer Data Management Systems. In SIGMOD, Paris,
France, pages 539–550, 2004.

[19] M. Vincent and J. Liu. Multivalued Dependencies in XML.
In BNCOD, Coventry, UK, pages 4–18, 2003.

[20] W3C. XML Query Use Cases, W3C Working Draft 02,
May, 2003. http://www.w3.org/TR/xquery-use-cases.

[21] W3C. XQuery 1.0 and XPath 2.0 Formal Semantics.
http://www.w3.org/TR/query-semantics/, May 2003.

[22] P. Wood. Containment for XPath Fragments under DTD
Constraints. In ICDT, Siena, Italy, pages 300–314, 2003.

[23] S. A. Yahia, S. Cho, L. S. Lakshmanan, and D. Srivastava.
Minimization of Tree Pattern Queries. In SIGMOD, Santa
Barbara, CA, pages 315–331, 2001.

297

