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ABSTRACT
RDF is increasingly being used to represent metadata. RDF
Site Summary (RSS) is an application of RDF on the Web
that has considerably grown in popularity. However, the
way RSS systems operate today does not scale well. In this
paper we introduce G-ToPSS, a scalable publish/subscribe
system for selective information dissemination. G-ToPSS is
particularly well suited for applications that deal with large-
volume content distribution from diverse sources. RSS is an
instance of the content distribution problem. G-ToPSS al-
lows use of ontology as a way to provide additional informa-
tion about the data. Furthermore, in this paper we show
how G-ToPSS can support RDFS class taxonomies. We
have implemented and experimentally evaluated G-ToPSS
and we provide results in the paper demonstrating its scal-
ability compared to alternatives.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; H.3.4 [Information Systems]: Systems and Soft-
ware

General Terms
Design, performance, algorithms

Keywords
publish/subscribe, content-based routing, RDF, information
dissemination, graph matching

1. INTRODUCTION
The amount of information on the Internet is continu-

ously increasing. It is becoming increasingly easier for non-
computer oriented users to publish information on the Inter-
net because of myriads of user-friendly tools that now exist.
For example, it is very easy for a user to keep an “online”
diary (e.g., blogs) using a variety of tools. Collaboration
tools such as a wiki, allow users to quickly publish infor-
mation from within a web browser, without requiring access
or knowledge of any additional applications. Finally, appli-
cations for web page authoring are becoming ever so easier
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to use. As a result of the advances in web page author-
ing tools, the number of information publishers has grown
considerably.

RDF Site Summary (RSS) is a metadata language by the
W3C for describing content changes.1 RSS is so versatile
that any kind of content changes can be described (e.g., web
site modifications, wiki updates, history of source code from
a versioning software (e.g., CVS)). A RSS feed is a stream of
RSS metadata that tracks changes for a particular content
over time.

Typically, users apply a tool, which can read RSS feeds,
to periodically check a number of RSS feeds by pulling RSS
files from a web site. When RSS feeds indicate that the
content has been updated, the user is informed. The user is
expected to explicitly specify which RSS feeds to monitor.

RSS feedRSS browser

publication of interests

subscriptions publications
Broker

Figure 1: RDF Site Summary Dissemination System
based on G-ToPSS

A RSS feed aggregator is a service that monitors large
numbers of feeds. It allows users to subscribe to the con-
tent that they are interested in without explicitly specifying
which RSS feeds the content is coming from. This is particu-
larly convenient for the user, since the number of RSS feeds
that can carry information of interest to the user can be
very large. In addition, a user does not have the resources
to monitor large number of feeds and hence the user can
easily miss information of interest.

RSS feed aggregators use pull-based architectures, where
the aggregator pulls RSS feeds from a web site that hosts
the feed. As the number of feeds on the web proliferates
(e.g., due to ease of publishing information on the web),
this architecture is not going to scale. It not only consumes
unnecessary resources, but also becomes difficult to ensure
timely delivery of updates.

1http://web.resource.org/rss/1.0/spec
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new content

continuously poll for new content

popular RSS feed

RSS aggregators

Figure 2: Current RSS dissemination architecture

G−ToPSS broker popular RSS feed

RSS aggregators

notification about new content

subscribe to new content

publication about new content

Figure 3: G-ToPSS RSS dissemination architecture

Figure 2 illustrates the scalability problem. Multiple RSS
aggregators (i.e., personal (desktop) aggregators, online news
aggregators, and server side aggregators) poll numerous RSS
feed sites, each. Anecdotal evidence suggests that the way
RSS dissemination is currently done can severely affect the
performance of websites hosting popular RSS feeds. 2

In this paper, we describe G-ToPSS3, a graph-based pub-
lish/subscribe architecture for dissemination of RDF data.
The G-ToPSS system provides fast filtering of RDF meta-
data such as RSS publications, as well as timely delivery of
publications to interested subscribers in a scalable manner.
Figure 1 shows the architecture of G-ToPSS. The new infor-
mation system architecture significantly reduces the number
of unnecessary polls of RSS feed sites (see Figure 3).

RSS is just one application that can benefit from this
architecture. Another application that is increasingly be-
coming important is content management in the enterprise.
PDF is the de facto standard for representing documents in
electronic form while preserving their original formatting.
RDF metadata can be embedded in PDF documents, which
aids in document management. G-ToPSS provides an ar-
chitecture that could be applied to efficiently content-based
routing.

In addition, [8] describes a number of uses cases for RDF
data access, many of which can directly benefit from the
described architecture. Some examples include “finding un-
known media objects,” “avoiding traffic jams” and “explor-
ing the neighborhood.”

G-ToPSS employs the publish/subscribe, data-centric com-
munication model. There are three main entities in this
model: publishers, subscribers and brokers. Publishers send
all data to a broker (or a network of brokers). Subscribers
register with the broker their interest in receiving some data.
The role of a broker is to mediate communication between
the publishers and the subscribers by matching the pub-

2InfoWorld RSS growing pains, July 16, 2004
RSS Traffic Burdens Publisher’s Servers, July 19, 2004
3G-ToPSS is a part of the Toronto Publish/Subscribe Sys-
tem (ToPSS) research effort, which comprises a large num-
ber of publish/subscribe research projects, such as M-ToPSS
(mobility-aware) [3], S-ToPSS (semantic matching) [13], A-
ToPSS (approximate matching) [12], L-ToPSS (location-
based matching) [15], padres (federated p/s) [11] and others.

lished data with the interests of the subscribers. This way
the subscribers do not need to know who is publishing the
data, as long as the data meets their specific interest, and
the publishers do not need to know who are the ultimate
receivers of their publications. This provides decoupling
of senders and receivers of data both in space and time,
which makes the publish/subscribe paradigm particularly
well suited for structuring of large and dynamic distributed
systems such as RSS feed dissemination for example.

The contributions of this paper are:

1. An original publish/subscribe system model is devel-
oped to support large-volume graph-based content dis-
tribution from diverse sources.

2. G-ToPSS allows the use of ontology to specify class
taxonomy as semantic information about the data.

3. G-ToPSS system offers scalability with the increase of
the number of users while maintains efficient filtering
rate.

The paper is organized as following. In Section 2 we
briefly summarize related work. The G-ToPSS publish/ sub-
scribe model supporting graph matching is developed in Sec-
tion 3. Section 4 describes the graph matching algorithms
and data structures. Section 5 presents the experimental
evaluation and Section 6 concludes the paper and discusses
the directions for future work.

2. RELATED WORK
Use of the publish/subscribe communication model for se-

lective information dissemination has been studied exten-
sively. Existing publish/subscribe systems [9, 1, 6, 4] use
attribute-value pairs to represent publications, while con-
junctions of predicates with standard relational operators
are used to represent subscriptions. Systems such as those
described in [2, 7] use XML to express publications and
XPath as the subscription language. XPath provides a way
to express path patterns over a tree, but it does not allow
patterns to be further constrained using relational operators,
as does G-ToPSS and other non-XPath systems.

Previously, we have built a prototype publish/subscribe
system S-ToPSS [13] that extends the traditional attribute-
value-pair-based systems with capabilities to process syn-
tactically different, but semantically-equivalent information,
thus achieving another level of decoupling, which we termed
representational decoupling. S-ToPSS uses an ontology to be
able to deal with syntactically disparate subscriptions and
publications. The ontology which can include synonyms, a
taxonomy and transformation rules was specified using S-
ToPSS specific methods. On the other hand, G-ToPSS pub-
lication and subscription data models are based on directed
graphs in general and RDF in particular. Use of RDF makes
it possible for G-ToPSS to use ontologies built on top of RDF
using languages such as RDFS and OWL. To illustrate this,
in this paper, we extend the G-ToPSS subscription language
with type constraints for subjects and objects, where the
type information is represented in a RDFS taxonomy.

OPS [14] is another ontology-based publish/subscribe sys-
tem whose publication and subscription model is also based
on RDF. OPS uses a very general subgraph isomorphism
algorithm for matching over overlapping graphs. However,
this approach, as we show in this paper, unnecessarily in-
creases the matching complexity because it assumes that any
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node of the publication graph can map to any node of the
subscription graph. In this paper, we compare the perfor-
mance of G-ToPSS to OPS and show that G-ToPSS always
outperforms OPS.

A RDF document can be represented as directed labelled
graph. Every node in the graph has a unique name, and
no two edges between any two nodes can have the same la-
bel either. Given this assumption, in this paper, we show
how to store such graphs in a way that exploits common-
alities between them and how to use this data structure to
efficiently filter publications.

Racer [10] is a publish/subscribe system based on a de-
scription logics inference engine. Because OWL is based on
description logics, Racer can be used for RDF/OWL filter-
ing. Racer does not scale as well as G-ToPSS (matching
times are in the order of 10s of seconds even for very sim-
ple subscriptions), but it does have more powerful inference
capabilities.

CREAM [5] is an event-based middleware platform for dis-
tributed heterogeneous event-based applications. Its event
dissemination service is based on the publish/subscribe model.
Similar to other publish/subscribe systems, the subscription
and publication model in CREAM, is based on attribute-
value pairs. Like S-ToPSS, attributes and values can be
associated with semantic information from an ontology. Un-
like G-ToPSS, which is based on RDF, ontology and data
are represented in a CREAM-specific data model. In ad-
dition, we are not aware of any quantitative evaluations of
CREAM’s scalability such as the one for G-ToPSS presented
in this paper.

3. G-TOPSS MODEL
We describe the three components of the G-ToPSS data

model: publications, subscriptions and ontology.

3.1 Publication Data Model
A G-ToPSS publication is represented as a directed labelled

graph. In this paper, we use RDF semantics to interpret the
graph as a set of triples (subject, property, object). Each
triple is represented by a node-edge-node link (as shown in
Figure 4). subject and property are URI references, while
object is either an URI reference or a literal. A publication
is a directed graph where the vertices represent subjects and
objects and edges between them represent properties.

Subject Object
property

Figure 4: RDF triple graph

Figure 5(c) illustrates a publication about one of Prof. Ja-
cobsen’s papers published in the 2001 SIGMOD conference.

3.2 Subscription Language Model
A G-ToPSS subscription is a directed graph pattern spec-

ifying the structure of the publication graph with optional
constraints on some vertices. A subscription is represented
by a set of 5-tuples (subject, property, object, constraintSet
(subject), constraintSet (object)). Constraint sets can be
empty.

Similar to the publication data model, each 5-tuple can
be represented as a link starting from the subject node and
ending at the object node with the property as its label.

From the publication data model, we know that each node
is labelled with a specific value. However, in a subscription,
we also allow subject and object to be either a constrained or
unconstrained variable. An unconstrained variable matches
any specific value of the publication; while the constraint
variable matches only values satisfying the constraint. A
constraint is represented as a predicate of the form (?x, op, v)
where ?x is the variable, op is an operator and v is a value.

There are two types of operators: Boolean, for literal value
filtering and is-a, for RDFS taxonomy filtering. Boolean
constrains are one of =, ≤ and ≥ with traditional relational
operator semantics. is-a operators are also one of =, ≤ and
≥ but with alternative semantics. ≤ means the instance ?x
is the descendant of the class v. ≥ means that the instance
?x is the ancestor of class v. = means that ?x is the direct
instance of class v (i.e., a child of v).

For example, Figure 5(a) illustrates a subscription that
specifies interest in a paper published at the SIGMOD con-
ference after the year 2000. This type of constraint is for
literal value filtering.

The subscription in Figure 5(b) is looking for Arno’s pub-
lication in a conference after 1999. There are two variables;
the one constraining the year is a literal value filter; the
other is a semantic constraint which uses the class taxonomy.
Only an instance in the publication that is a descendant of
the “Publication” class is going to match.

3.3 Matching Semantics
We denote GP as the publication graph and GS as the

subscription graph pattern. The matching problem is then
defined as verifying whether GS is embedded in GP (or iso-
morphic to one or more subgraphs of GP ). Graph pattern
GS is embedded in GP if every node in GS maps to a node
in GP such that all constraints of GS are satisfied.

Formally speaking, for each 5-tuple (subject, property, ob-
ject, constraintSet (subject), constraintSet (object)) in sub-
scription graph GS , there is at least one triple (subject, prop-
erty, object) in publication GP such that the subject and
object nodes are matched and linked by the same property
edge. The nodes that match are either the same (i.e., their
labels are lexicographically equal) or the node in GS is a
variable for which the value of the node in GP satisfies all
constraints associated with the variable.

For example, the subscription in Figure 5(a) is matched
by the publication in Figure 5(c) since the publication con-
tains the same links (Arno’s paper �17, author, Arno Jacob-
sen), ((Arno’s paper �17, conference, SIGMOD), and (2001
> 2000 ), thus (SIGMOD, year,?x(?x > 2000)) is satisfied.

3.4 Ontology Support
A RDFS class taxonomy with is-a relationship is the se-

mantic information about a subject or an object that is
available in the G-ToPSS ontology. Multiple inheritance is
allowed and the only restriction on the taxonomy is that it
must be acyclic. We also list all instances of a class in the
taxonomy. Alternatively, this information can be specified
in the RDF graph using a type property, but for simplicity
we have opted to include this information in the taxonomy.
Note that an instance can also have multiple parents.

In Figure 6, we show an example of a class taxonomy
about an academic bibliography system. Class “Publica-
tions” includes three subclasses: “Journal”, “Conference
Proceeding” and “Technical Report”. “Technical Report”
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Arno’s
Paper #17

“Arno
Jacobsen”

SIGMOD
?z

(?z > 2000)

author

conference

year

(a) Subscription S1

?y
(?y  <=

Publication)

“Arno
Jacobsen”

SIGMOD
?x

(?x > 1999)

author

conference

year

(b) Subscription S2

Arno’s
Paper #17

“Arno
Jacobsen”

“Very Fast….”

SIGMOD

“Some
Location”

“2001"

author

conference
title

year
location

(c) event

Arno’s
Paper #17

“Arno
Jacobsen”

SIGMOD

*1
S1: (?z > 2000)
S2: (?x > 1999)

author

conference

year

*2
S2: (?y <=

Publication)

author

conference

(d) GM contains S1 and S2

Figure 5: Example subscriptions, events and GM

Publication
Department
Publication Jacobsen’s

Publication

Journal
Conference
Proceedings

Technical
Report

TKDE VLDBWWW

Arno’s
Paper #17

Figure 6: Example taxonomy

belongs to “Publications”, “Department Publications” and
“Jacobsen’s Publications” simultaneously. The document
instance “Arno’s paper �17” belongs to both “Jacobsen’s
Publications” and “SIGMOD” proceedings.

As a side note, existing publish/subscribe systems are
classified as either content-based or hierarchical (topic) based.
Thus, class taxonomy is a way to seamless integrate both
models. When filtering, a subscription is matched if and
only if both the content and the hierarchical constraints are
satisfied.

4. ALGORITHM AND DATA STRUCTURE
To exploit overlap between subscriptions we integrate all

subscriptions into a single graph. We denote the graph con-
taining all subscriptions as GM . Given all subscriptions,
GM , a publication, GP , the publish/subscribe graph match-
ing problem is to identify all the subgraphs, GSi (represent-
ing a subscription Si) in GM which are matched by GP .
In other words, the goal is to determine all graph patterns,
GSi , in GM that match some subgraph of GP .

This matching problem is different from subgraph isomor-
phism. The subgraph isomorphism problem can be stated
as follows: given graph G1 and G2, identify all subgraphs of
G2 which are isomorphic to G1. This differs from the prob-
lem we are trying to solve which is to identify all subgraphs
of G2 that are isomorphic to some subgraph of G1.

4.1 Data Structure
Since there can be multiple edges between the same pair

of nodes, we use two-level hash tables to represent GM . At
the first level, we use a hash table to store all the pairs of
vertices taking the names of the two nodes as the hash key.
Each entry of the first hash table is a pointer to another
(second-level) hash table that contains a list of all the edges
between these two nodes. The edge label (i.e., “property”
in the 5-tuple) is used as the hash key. Each edge points to
a list of subscriptions that contain this edge.

Figure 7 shows the data structure of GM . There are two
edges between node A and B and both s1 and s2 contain
the edge a between A and B.

Any subscription can contain multiple variables that can
be matched by any vertex in the publication graph. For ex-
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Figure 7: Data Structure

ample, Figures 5(a) and 5(b) show two subscription graphs
containing variables and the merged subscription graph, GM ,
in Figure 5(d).

The data structure from Figure 7 allows us to store uniquely
labelled nodes only once. In other words, nodes belonging
to different subscriptions, but with the same label map to
the same node in GM . This is possible because each node
in a graph is uniquely identified by its label. However, this
is not the case with nodes with variable labels. Variable
labels do not uniquely identify nodes, but instead they rep-
resent a (possibly constrained) pattern on node labels from
a publication.

We introduce a special sequence of labels, �i|i ≥ 1, to
represent variables. The value of index i is bounded by
the number of variables in the subscription with the most
variables among all subscriptions in GM .

For example, in Figure 5(d), we use one node labelled as
�1 to represent both ?x and ?z; ?x and ?y are represented
by two nodes �1 and �2 since they appear in the same sub-
scription. Mapping between original variable labels from
the subscription (e.g., ?x) to the corresponding star name
is preserved.

Mapping of variables from subscriptions to star labels is
arbitrary for the sake of simplicity, even though some map-
pings are better than others since they can results in a
sparser GM . In the future, we are going to investigate how
much can be gained, in terms of matching performance, by
having a more sophisticated mapping.

4.2 Matching Algorithm
First, we discuss how the subscription matrix is created

when inserting subscriptions. Suppose GM is a graph con-
taining all subscriptions, and GS is a subscription graph.
|GS . � | is the number of variables in the subscription graph,
variable vertices in GS are labelled as �i where 0 < i <
|GS . � | + 1. GM .� is the number of stars in the GM . Note
that all vertices in GS and GM are unique. GM .T1 is the
first-level hash table, and T2 is the second-level hash table.
E.subs is a set of subscriptions containing edge E, GM .subs
is the set of all subscriptions in GM . E (and E2) is a di-
rected edge from E.v to E.w, E.smEdge is an edge in GM

that overlaps with E. New Table(A,B) creates a table with
2 columns A and B that will be used to decided on the
bindings for variables.

Algorithm Insert(GS)
1. if GS .� > GM .�
2. GM .� = GS .�
3. for each edge E ∈ GS .edges
4. T2 = GM .T1.getTable(E.v, E.w)
5. if (T2 is null)
6. T2 = GM .T1.insert(E.v, E.w)
7. E2 = T2.getEdge(E)

8. if (E2 is null)
9. E2 = T2.insertEdge(E)
10. E2.bindingTable = newTable(E.v, E.w)
11. E2.subs = E2.subs + GS

12. GM .subs = GM .subs + GS

13. E.smEdge = E2

Algorithm Insert is the procedure for subscription inser-
tion. For each edge in GS , we check if there is a correspond-
ing edge in the first-level hash table. If there is no such
edge, we update the hash tables by inserting E.vE.w into
the first-level hash table and edge E into the correspond-
ing second-level hash table. Finally, the subscription id is
inserted into the list associated with edge E and added to
GM .subs.

Next, we explain how to perform matching using the sub-
scription graph GM when a publication arrives. GE is the
publication graph (the number of edges in GE is m). G′

E is a
completed graph containing vertices E.v, E.w, �i such that
0 < i < |GM . � | + 1. All nodes in GE are unique. SubSet
contains all subscriptions that have at least one edge in GM

that are referenced by GE . Result is a set of (S,R) where S
is a subscription and R is a satisfying binding for variables.
Natural join (��) is an equality join on all common columns.

Algorithm match(GE)
1. for each E ∈ GE .edges
2. create a fully connected graph G′

E
3. for each edge E2 ∈ G′

E
4. T2 = GM .T1.getTable(E2.v, E2.w)
5. if (T2 not null)
6. E3 = T2.getEdge(E)
7. if (E3 not null)
8. for all S ∈ E3.subs
9. S.edgeCount + +
10. E3.bindingTable+ = (E.v, E.w)
11. SubSet = SubSet + E3.subs
12. result = 0
13. for all subscriptions S ∈ SubSet
14. if (S.edgeCount ≥ |S.edges|)
15. S.edgeCount = 0
16. b = E.smEdge.bindingTable|E ∈ S
17. for every edge E2 ∈ S.edges − E
18. b = b �� E2.smEdge.bindingTable
19. for every row R ∈ b
20. if CheckConstraint(R,CS , T )
21. result = result + (S, R)

Algorithm match is the procedure for matching publica-
tions against subscriptions. There are two stages in the
matching process. First, for each edge in the publication,
we check all the matched subscription edges in GM . Then
we find the satisfying bindings for variables and evaluate the
constraints.

In the first stage, for the publication edge v1v2, the po-
tentially matched edges in GM include v1v2, v1�i, �iv2 and
�i�j . There are three actions to perform on these poten-
tially matched edges. (1) Add v1v2 into the binding tables
of all these matched edges so that they can be used in the
second stage. (2) Increase the counters of subscriptions as-
sociated with these edges. (3) Put these subscriptions into
the Subset as the candidates of matches. This completes
the first stage of matching.

In the second stage, we find the matched subscriptions
by checking the candidates in Subset one-by-one. For each
subscription si in Subset, we join all the binding tables of
edges belonging to si. If the result table is not empty, then
the entries in the result table contain all valid binding values
for all variables in the subscription.
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Figure 8 illustrates an example for a binding table join.
For example, the subscription contains two edges A�1 and
�1B. There are three entries in the binding table of A�1

which means A�1 is matched by three edges AB, AC and
AE in the publication. �1B is matched by 5 edges in the
publication. Joining of these two tables produces ACB and
AEB and hence �1 can be bounded with value C and E.

A*1 AB

AC

AE

AB

DB

CB

*1B

EB

GB

ACB

AEB

A *1
B

Figure 8: Binding table join

After identifying all valid bindings of variables, we can
use the binding value w to evaluate the constraint. For the
constraint (?x, op, v), we need to check whether (w op v) is
true. For the value filtering constraint, (w op v) is evaluated
using standard relational operator comparison.

For the class taxonomy filtering constraint (w op v), we
need to check the descendant-ancestor relationship between
the specific instance w and the class v by traversing the
taxonomy tree. The constraint checking algorithm is shown
in Algorithm CheckConstraint .

Algorithm CheckConstraint(R, CS , T )
1. for each variable � in S
2. find the value v in R and the constraint (op, c)
3. return isTrue(v, op, c, T )

Algorithm isTrue(v, op, c, T )if
1. op = LT return isNodeDescendant(v, c, T)
2. if op = GT return isNodeDescendant(c, v, T)
3. if op = EQ return (c.equals(v))

For example, in Figure 5(d), for subscription s2, �1 is
matched by node “2001” since 2001 > 1999 and �2 is matched
by node “Arno’s paper �17” since it is descendant of class
“Publication.”

4.3 Analysis
Space Complexity: The space cost mainly includes two

parts: hash tables and linked lists associated with each edge
to store the subscription ids that contain this edge. The size
for the hash tables is determined by the number of unique
edges among all the subscriptions. The length of the linked
list depends on the average number of subscriptions each
edge is associated with. Therefore, we have

O(|GM .edgs| + |GM .edgs| × Nse)

where |GM .edges| is the number of unique edges in matrix
GM and NSe is the average number of subscriptions each
edge is associated with.

Time Complexity: The time of the Insert(GS) algo-
rithm depends on the number of edges for each subscription
and the complexity is

O(|GS .edges|).

For the matching algorithm, it consists of two steps. First,
edge matching. By checking each edges in the publication,
we determine all the subscriptions that have at least one
edge matched by the publication. The time of the first step
depends on the size of the completed graph G′

E and the
number of edges in the publication. Since each graph G′

E

contains all the stars in GM plus E.v and E.w, the number
of edges in G′

E is
(

k+2
2

)
. Suppose k is the number of stars in

GM , m is the number of edges in the publication, we have

O(m ∗ 2

(
k + 2

2

)
) ∼ O(mk2).

In the second step, for each subscription in SubSet, if all
the edges of it are matched, we perform a join operation on
the binding tables to determine whether there is a satisfying
binding of the variables, then we check the constraints. To
join two tables, the time is linear with the size of the smaller
table. The time complexity to find satisfying bindings of
variables for each subscription is

O(k ∗ l)

where k is the number of stars in GM and l is the size of the
smallest binding table for variables.

The time to check whether the constraint for the variable
is satisfied according to the class taxonomy is dependent on
the complexity of the taxonomy tree. Since multiple parents
are allowed in the class taxonomy tree, the time is O(dt)
where d is the depth of the tree and t is the average number
of parents each node may have.

Overall, the matching time to evaluate all subscriptions is

O(mk2) + O(n ∗ k ∗ l + n ∗ k ∗ dt)

where n is the number of subscriptions in SubSet. In real
applications, the class taxonomy tree is fixed, the number
of variables in one subscription is small (usually 1 to 3, at
most 5), m << n, and n is around the number of matched
subscriptions. Therefore, the overall matching time is linear
with the number of matched subscriptions:

O(ratiomatch ∗ number of subscriptions).

5. EVALUATION
We have implemented the algorithm in Java. We experi-

mentally evaluate the rate of matching and the memory use.
We run the experiments on a Linux system with 1GB RAM
and a 1GHz microprocessor. We are using a synthetic work-
load so that we can independently examine various aspects
of G-ToPSS. We report the results for the two most im-
portant metrics from a user’s perspective, namely the rate
of matching and the memory requirements. The workload
parameters are shown in Table 1.

SizeP and SizeS are decided by (number of nodes, num-
ber of edges) the publication graph and the subscription
graph. The number of edges must be larger than the num-
ber of nodes in order to obtain a connected graph. We use
ratiomatch to control the number of matched subscriptions
that are generated as subgraphs from the publication graph.

We generate the test workload using the parameter values
from Table 1. A publication is generated first. For example,
for publication of size (k,m) we first generate a simple path
of length k − 1 then we generate m − k + 1 edges between
random pairs of the k nodes.
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(a) Memory vs. #subscriptions (b) Matching time vs. #subscriptions

(c) Memory vs. subscription overlap (d) Memory vs. subscription size

(e) Matching time vs. subscription size (f) Matching time vs. matching ratio

(g) G-ToPSS vs. OPS (h) OPS vs. naive

Figure 9: Experimental performance results
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Table 1: The workload parameters in experiments
parameters default values description

SizeP (35,90) size of publication
SizeS (5,35) size of subscription
Nsub 30,000 number of subscriptions

ratiomatch 0.1% ratio of matched subscriptions among all
Nstars 2 number of stars (variables) in one subscription
Nsub∗ 27,000 number of subscriptions containing stars

overlaps 50% ratio of overlap among subscriptions

Subscriptions are generated in four steps. First, ratiomatch

subscriptions that match the publication are generated by
randomly selecting a subgraph of the publication. Then,
overlaps subscriptions are generated that completely over-
lap using the same technique as for matching subscriptions.
Then, Nsub − overlaps non-overlapping subscriptions are
generated randomly in the same way that the publication
was generated. In the fourth step, Nstars vertices are se-
lected from all Nsub∗ subscriptions and replaced with a vari-
able (�). Alternatively, we limit values that can be bound
to a variable by adding constraints.

All measurements are performed after G-ToPSS has loaded
all the subscriptions. We look at the effect of the number of
subscriptions, subscription size and matching ratio (number
of subscriptions matched by a publication). Finally, we com-
pare G-ToPSS with two alternative implementations. For
each experiment, we vary one parameter and fix others to
their default values as specified in Table 1.

Number of subscriptions: Figure 9(a) shows the mem-
ory use with increasing number of subscriptions. We see that
the memory size grows linearly as the number of subscrip-
tions increase. Since all subscriptions in our experiments
are of the same size and the overlap factor is constant, the
memory increase per subscription is also a constant.

Figure 9(b) shows the time to find all matches for a pub-
lication given a fixed set of subscriptions. As the set of
subscriptions increases, so does the time. The number of
subscriptions that match the publication is relative to the
total number of subscriptions in the set. Consequently, the
number of matches increases as the number of subscriptions
is increased.

The time to match a publication is split between struc-
ture matching phase and constraint evaluation phase. As
the number of subscriptions increase, both of these times
increase by a fixed amount because the number of matches
increases constantly.

Subscription size: Figure 9(c) shows how the space used
by the subscriptions decreases as the overlap between them
increases. We present this to validate our workload. The
matrix space is the size of GM , while whole memory is equal
to the size of GM plus the space used to store all the sub-
scriptions.

Figure 9(e) shows the effect of increasing subscription size
on the matching time. We see that the time increases more
rapidly as the number of edges increases (e.g., from 4 to
8), the time almost doubles. On the other hand, as the
increase in number of edges decrease, so does the increase
in matching time, hence the matching time is not affected
by the number of nodes, but by the number of edges in the
subscription.

Matching ratio: Figure 9(f) shows the effect of increas-
ing the number of subscriptions that match the publication.
As this number grows, the time to match grows very quickly.
This is mainly due to increased time to calculate all the
bindings for each subscription.

G-ToPSS vs. Alternatives: In Figure 9(g) we compare
the performance of our algorithm to the OPS algorithm. As
the graph shows, OPS matching time increases very quickly
with the number of subscriptions. The main reason for the
significant difference in matching times comes from the dif-
ferences in basic assumptions. The OPS algorithm makes
the same basic assumption as do other, traditional, sub-
graph isomorphism algorithms, namely that every node in a
subscription is a variable. In other words, any node of a pub-
lication can match with any other node in the subscription
graph. However, this assumption unnecessarily increases the
matching complexity, as we see in the evaluation. We make
a more realistic assumption that the number of variables in
any subscription is low as compared to the total number
of nodes in a subscription graph and the nodes in a RDF
publication are unique.

Figure 9(h) illustrates that, even though OPS is less scal-
able than G-ToPSS, it is still far better then a naive ap-
proach which sequentially checks all subscriptions to find
the matching ones.

6. CONCLUSIONS AND FUTURE WORK
Use of RDF as a language for representing metadata is

growing. Applications such as RSS and content management
are exhibiting use patterns that current systems were not
designed for.

The G-ToPSS prototype shows that a data-centric, push-
based architecture such as publish/subscribe is a very good
fit for just such applications. G-ToPSS is able to support
high matching rates for very complex subscriptions. In prac-
tice, we expect these subscriptions to be simpler (i.e., have
smaller number of edges and stars) on average than the ones
used in our experiments.

Being based on RDF, G-ToPSS can be easily extended to
use additional semantic information expressed in languages
built on top of RDF, such as RDFS and OWL. We show how
a RDFS taxonomy can be used to increase the expressiveness
of the G-ToPSS query language. Our implementation uses
an efficient traversal of the class hierarchy with support for
multiple inheritance, which adds more expressiveness to the
language without unduly affecting the matching rate. On
the other hand, more powerful inference techniques such as
those of Descriptions Logics (on which OWL is based) could
augment the constraint filtering without significant changes
to the matching engine.
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In the future, we will work on extending G-ToPSS with
full RDF language features (such as bags and sequences),
which we have left out since their implementation does not
affect the matching rate but merely adds syntactic sugar.

Extending G-ToPSS to support variables on predicates
is straight forward since the same techniques for supporting
variables on subjects and objects can be used. Consequently,
matching time complexity is not affected by this extension.

In addition, we are going to implement several optimiza-
tions for constraint processing. If the number of overlapping
constraints is large, then the systems can benefit from par-
allel constraint evaluation, such as only evaluating unique
constraint once by exploiting the overlap among constraints.
Techniques for parallel constraint evaluation have already
been examined in previous research on attribute-based pub-
lish/subscribe systems and we believe that the same tech-
niques can be applied here with small modifications in in-
sertion and matching algorithm. These optimizations are
useful when the structure of the subscriptions is practically
the same so that the degree of overlap is large. In this
case, the performance affecting filtering happens during the
constraint matching phase. Furthermore, we are currently
examining ways of doing natural join for overlapping sub-
scriptions in a way that takes advantage of the overlap.
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